Computing Limits for MATH 139

Exam Relevance for MATH 139

Likelihood of appearing: Essential

Tested on every exam. Master factoring, conjugates, and algebraic manipulation for indeterminate forms.

Lesson

What Does "Computing Limits" Mean?

Computing limits means finding the value that a function approaches as $x$ gets closer and closer to some number.

The Big Question: What happens to $f(x)$ as $x$ approaches $a$?


The Strategy

Step 1: Try Direct Substitution First!

Always start by plugging in the value:

  • If you get a number → that's your answer!
  • If you get $\frac{0}{0}$ → it's indeterminate, use algebraic tricks
  • If you get $\frac{\text{number}}{0}$ → usually DNE or $\pm\infty$

Step 2: If Indeterminate ($\frac{0}{0}$), Try These Techniques

  1. Factor and cancel — most common method
  2. Rationalize — when you see square roots
  3. Expand — sometimes simplifies things
  4. Common denominator — for complex fractions

Technique 1: Factoring and Canceling

The most common technique! When both numerator and denominator equal zero, they share a common factor.

Example 1: Basic Factoring

Problem: $\displaystyle\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$

Step 1: Try direct substitution: $$\frac{3^2 - 9}{3 - 3} = \frac{0}{0} \quad \text{Indeterminate!}$$

Step 2: Factor the numerator: $$x^2 - 9 = (x-3)(x+3)$$

Step 3: Cancel the common factor: $$\frac{(x-3)(x+3)}{x-3} = x + 3 \quad (x \neq 3)$$

Step 4: Now substitute: $$\lim_{x \to 3} (x + 3) = 3 + 3 = \boxed{6}$$


Example 2: Factoring a Cubic

Problem: $\displaystyle\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$

Step 1: Check: $\frac{8 - 8}{0} = \frac{0}{0}$ ✓ Indeterminate

Step 2: Factor using the difference of cubes formula: $$a^3 - b^3 = (a-b)(a^2 + ab + b^2)$$ $$x^3 - 8 = x^3 - 2^3 = (x-2)(x^2 + 2x + 4)$$

Step 3: Cancel: $$\frac{(x-2)(x^2 + 2x + 4)}{x-2} = x^2 + 2x + 4$$

Step 4: Substitute: $$2^2 + 2(2) + 4 = 4 + 4 + 4 = \boxed{12}$$


Technique 2: Rationalizing

When you see square roots, multiply by the conjugate.

Conjugate pairs:

  • $\sqrt{a} + b$ and $\sqrt{a} - b$
  • $\sqrt{a} + \sqrt{b}$ and $\sqrt{a} - \sqrt{b}$

Why it works: $(\sqrt{a} + b)(\sqrt{a} - b) = a - b^2$ — the square root disappears!

Example 3: Rationalizing the Numerator

Problem: $\displaystyle\lim_{x \to 0} \frac{\sqrt{x+4} - 2}{x}$

Step 1: Check: $\frac{\sqrt{4} - 2}{0} = \frac{0}{0}$ ✓ Indeterminate

Step 2: Multiply by the conjugate: $$\frac{\sqrt{x+4} - 2}{x} \cdot \frac{\sqrt{x+4} + 2}{\sqrt{x+4} + 2}$$

Step 3: Simplify the numerator: $$(\sqrt{x+4} - 2)(\sqrt{x+4} + 2) = (x+4) - 4 = x$$

Step 4: The expression becomes: $$\frac{x}{x(\sqrt{x+4} + 2)} = \frac{1}{\sqrt{x+4} + 2}$$

Step 5: Now substitute $x = 0$: $$\frac{1}{\sqrt{0+4} + 2} = \frac{1}{2 + 2} = \boxed{\frac{1}{4}}$$


Technique 3: Common Denominators

For complex fractions, combine into a single fraction first.

Example 4: Complex Fraction

Problem: $\displaystyle\lim_{x \to 0} \frac{\frac{1}{x+2} - \frac{1}{2}}{x}$

Step 1: Check: plugging in gives $\frac{0}{0}$ ✓

Step 2: Combine the fractions in the numerator: $$\frac{1}{x+2} - \frac{1}{2} = \frac{2 - (x+2)}{2(x+2)} = \frac{-x}{2(x+2)}$$

Step 3: Rewrite the limit: $$\lim_{x \to 0} \frac{\frac{-x}{2(x+2)}}{x} = \lim_{x \to 0} \frac{-x}{2(x+2)} \cdot \frac{1}{x}$$

Step 4: Cancel the $x$: $$= \lim_{x \to 0} \frac{-1}{2(x+2)} = \frac{-1}{2(0+2)} = \boxed{-\frac{1}{4}}$$


Summary: The Flowchart

  1. Try plugging in the value
  2. If you get a number → done!
  3. If you get $\frac{0}{0}$:
    • Look for factors to cancel
    • If there's a square root, try rationalizing
    • If there's a complex fraction, find common denominators
  4. Simplify and try plugging in again
Courses Using This Skill

This skill is taught in the following courses. Create an account to access practice exercises and full course materials.