L’Hospital’s Rule and Indeterminate Forms for MATH 139

Exam Relevance for MATH 139

Likelihood of appearing: Unknown

Coverage varies by instructor. If covered, use for 0/0 or infinity/infinity forms only.

Lesson

What is L'Hôpital's Rule?

L'Hôpital was a French mathematician (pronounced "loh-pee-TAHL") who published this powerful technique for evaluating tricky limits.

L'Hôpital's Rule is a shortcut for evaluating limits that give you $\frac{0}{0}$ or $\frac{\infty}{\infty}$ when you try direct substitution.

The Big Idea: If plugging in gives $\frac{0}{0}$ or $\frac{\infty}{\infty}$, take the derivative of the top and bottom separately, then try again.

⚠️ A word of caution: Some courses limit your use of L'Hôpital's Rule, and exam questions may specifically ask you to evaluate limits without using it. Make sure you also know algebraic techniques (factoring, rationalizing, trig identities) — don't depend on L'Hôpital for every limit!


What Are Indeterminate Forms?

An indeterminate form is an expression that doesn't tell you what the limit actually is — it could be anything!

The Seven Indeterminate Forms

Form What it looks like
$\frac{0}{0}$ Both numerator and denominator → 0
$\frac{\infty}{\infty}$ Both → ∞ (or both → −∞)
$0 \cdot \infty$ One factor → 0, other → ∞
$\infty - \infty$ Subtracting two things that both → ∞
$0^0$ Base → 0, exponent → 0
$1^\infty$ Base → 1, exponent → ∞
$\infty^0$ Base → ∞, exponent → 0

L'Hôpital's Rule directly handles: $\frac{0}{0}$ and $\frac{\infty}{\infty}$

The others require conversion to $\frac{0}{0}$ or $\frac{\infty}{\infty}$ first (we'll show how).


L'Hôpital's Rule — The Formula

If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$ (or both → ∞), then:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

provided the limit on the right exists (or is ±∞).

Critical Rules

  1. Check first! Only use L'Hôpital when you have $\frac{0}{0}$ or $\frac{\infty}{\infty}$
  2. Differentiate separately — NOT the quotient rule! Take $f'(x)$ and $g'(x)$ individually
  3. You may need to apply it multiple times if you still get an indeterminate form
  4. Works for one-sided limits ($x \to a^+$ or $x \to a^-$) and limits at infinity ($x \to \infty$)

Example 1: Classic $\frac{0}{0}$

Evaluate $\displaystyle \lim_{x \to 0} \frac{\sin(x)}{x}$

Step 1: Check the form

Direct substitution: $\frac{\sin(0)}{0} = \frac{0}{0}$ ✓ Indeterminate!

Step 2: Apply L'Hôpital's Rule

$$\lim_{x \to 0} \frac{\sin(x)}{x} = \lim_{x \to 0} \frac{\cos(x)}{1} = \frac{\cos(0)}{1} = \frac{1}{1}$$

$$\boxed{1}$$


Example 2: $\frac{\infty}{\infty}$ with Exponentials

Evaluate $\displaystyle \lim_{x \to \infty} \frac{x^2}{e^x}$

Step 1: Check the form

As $x \to \infty$: numerator → ∞, denominator → ∞. Form: $\frac{\infty}{\infty}$ ✓

Step 2: Apply L'Hôpital's Rule

$$\lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{2x}{e^x}$$

Still $\frac{\infty}{\infty}$! Apply again:

$$= \lim_{x \to \infty} \frac{2}{e^x} = \frac{2}{\infty} = 0$$

$$\boxed{0}$$

Insight: Exponentials grow faster than any polynomial!


Example 3: Inverse Trig — $\frac{0}{0}$

Evaluate $\displaystyle \lim_{x \to 0} \frac{\arctan(x)}{x}$

Step 1: Check the form

$\frac{\arctan(0)}{0} = \frac{0}{0}$ ✓

Step 2: Apply L'Hôpital's Rule

Recall: $\frac{d}{dx}[\arctan(x)] = \frac{1}{1+x^2}$

$$\lim_{x \to 0} \frac{\arctan(x)}{x} = \lim_{x \to 0} \frac{\frac{1}{1+x^2}}{1} = \frac{1}{1+0} = 1$$

$$\boxed{1}$$


Example 4: Hyperbolic Functions

Evaluate $\displaystyle \lim_{x \to 0} \frac{\sinh(x) - x}{x^3}$

Step 1: Check the form

$\sinh(0) = 0$, so numerator = $0 - 0 = 0$, denominator = $0$. Form: $\frac{0}{0}$ ✓

Step 2: Apply L'Hôpital's Rule

$$\lim_{x \to 0} \frac{\sinh(x) - x}{x^3} = \lim_{x \to 0} \frac{\cosh(x) - 1}{3x^2}$$

Check: $\frac{\cosh(0) - 1}{0} = \frac{1-1}{0} = \frac{0}{0}$ — apply again!

$$= \lim_{x \to 0} \frac{\sinh(x)}{6x}$$

Still $\frac{0}{0}$! One more time:

$$= \lim_{x \to 0} \frac{\cosh(x)}{6} = \frac{\cosh(0)}{6} = \frac{1}{6}$$

$$\boxed{\frac{1}{6}}$$


Example 5: One-Sided Limit

Evaluate $\displaystyle \lim_{x \to 0^+} \frac{\ln(x)}{1/x}$

Step 1: Check the form

As $x \to 0^+$: $\ln(x) \to -\infty$ and $\frac{1}{x} \to +\infty$

Form: $\frac{-\infty}{\infty}$ ✓ (L'Hôpital works!)

Step 2: Apply L'Hôpital's Rule

$$\lim_{x \to 0^+} \frac{\ln(x)}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} \frac{1/x \cdot x^2}{-1} = \lim_{x \to 0^+} \frac{x}{-1} = \frac{0}{-1}$$

$$\boxed{0}$$


Converting Other Indeterminate Forms

Type: $0 \cdot \infty$

Strategy: Rewrite as a fraction to get $\frac{0}{0}$ or $\frac{\infty}{\infty}$

Example 6: Product Form $0 \cdot \infty$

Evaluate $\displaystyle \lim_{x \to 0^+} x \ln(x)$

Step 1: Identify the form

As $x \to 0^+$: $x \to 0$ and $\ln(x) \to -\infty$

Form: $0 \cdot (-\infty)$ — indeterminate but can't use L'Hôpital directly!

Step 2: Rewrite as a fraction

$$x \ln(x) = \frac{\ln(x)}{1/x}$$

Now as $x \to 0^+$: $\frac{-\infty}{\infty}$ ✓

Step 3: Apply L'Hôpital's Rule

$$\lim_{x \to 0^+} \frac{\ln(x)}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0$$

$$\boxed{0}$$


Type: $1^\infty$, $0^0$, $\infty^0$ (Exponential Indeterminate Forms)

Strategy: Use $y = f(x)^{g(x)}$, take $\ln$ of both sides, evaluate the limit, then exponentiate.

Example 7: The Famous $1^\infty$ Form

Evaluate $\displaystyle \lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$

Step 1: Identify the form

As $x \to \infty$: base → $1 + 0 = 1$, exponent → $\infty$

Form: $1^\infty$ — indeterminate!

Step 2: Take the natural log

Let $y = \left(1 + \frac{1}{x}\right)^x$

$$\ln(y) = x \ln\left(1 + \frac{1}{x}\right)$$

Step 3: Evaluate $\lim_{x \to \infty} \ln(y)$

This is $\infty \cdot 0$ form. Rewrite:

$$\ln(y) = \frac{\ln\left(1 + \frac{1}{x}\right)}{1/x}$$

As $x \to \infty$: $\frac{0}{0}$ ✓

Step 4: Apply L'Hôpital's Rule

$$\lim_{x \to \infty} \frac{\ln\left(1 + \frac{1}{x}\right)}{1/x} = \lim_{x \to \infty} \frac{\frac{1}{1+1/x} \cdot (-1/x^2)}{-1/x^2}$$

$$= \lim_{x \to \infty} \frac{1}{1 + 1/x} = \frac{1}{1+0} = 1$$

Step 5: Exponentiate

$\ln(y) \to 1$, so $y \to e^1$

$$\boxed{e}$$


Example 8: The $\infty^0$ Form

Evaluate $\displaystyle \lim_{x \to \infty} x^{1/x}$

Step 1: Identify the form

As $x \to \infty$: base → $\infty$, exponent → $0$

Form: $\infty^0$ — indeterminate!

Step 2: Take the natural log

Let $y = x^{1/x}$

$$\ln(y) = \frac{1}{x} \ln(x) = \frac{\ln(x)}{x}$$

Step 3: Evaluate

As $x \to \infty$: $\frac{\infty}{\infty}$ ✓

$$\lim_{x \to \infty} \frac{\ln(x)}{x} = \lim_{x \to \infty} \frac{1/x}{1} = 0$$

Step 4: Exponentiate

$\ln(y) \to 0$, so $y \to e^0 = 1$

$$\boxed{1}$$


Tips for L'Hôpital's Rule

  1. Always verify the indeterminate form before applying
  2. Simplify first if possible — sometimes algebra avoids the need for L'Hôpital
  3. Don't use the quotient rule — differentiate top and bottom separately
  4. If stuck in a loop, try a different approach (algebra, trig identity, etc.)
  5. For exponential forms, remember: take ln → evaluate → exponentiate back

Common Mistakes and Misunderstandings

❌ Mistake: Using L'Hôpital when you don't have an indeterminate form

Wrong: $\displaystyle \lim_{x \to 2} \frac{x^2}{x+1} = \lim_{x \to 2} \frac{2x}{1} = 4$

Why it's wrong: Direct substitution gives $\frac{4}{3}$, which is NOT indeterminate. L'Hôpital doesn't apply!

Correct: $\displaystyle \lim_{x \to 2} \frac{x^2}{x+1} = \frac{4}{3}$


❌ Mistake: Using the quotient rule instead of differentiating separately

Wrong: $\displaystyle \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{x \cos x - \sin x}{x^2}$

Why it's wrong: L'Hôpital says to take $f'(x)$ and $g'(x)$ separately, NOT the derivative of the whole fraction.

Correct: $\displaystyle \lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\cos x}{1} = 1$


❌ Mistake: Forgetting to check if the new limit exists

Wrong: Applying L'Hôpital repeatedly without checking if each step is valid.

Why it's wrong: L'Hôpital only works if the resulting limit exists (or is ±∞).

Correct: After each application, verify you still have an indeterminate form OR that the limit can be evaluated.

Formulas & Reference

L'Hôpital's Rule

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

When direct substitution gives 0/0 or ∞/∞, take the derivative of the numerator and denominator separately (NOT the quotient rule!), then evaluate the limit again.

Variables:
$f(x)$:
The numerator function
$g(x)$:
The denominator function
$f'(x)$:
Derivative of the numerator
$g'(x)$:
Derivative of the denominator
$a$:
The point where we're taking the limit (can also be ±∞)
Courses Using This Skill

This skill is taught in the following courses. Create an account to access practice exercises and full course materials.