Improper Integrals for MATH 122

Exam Relevance for MATH 122

Likelihood of appearing: Medium

Appears in the later part of the course. Convergence/divergence and evaluation.

Lesson

Understanding Improper Integrals

So far, all your integrals have had nice, finite bounds and well-behaved functions. But what happens when:

  • The interval extends to infinity? (like $\int_1^{\infty} \frac{1}{x^2} \, dx$)
  • The function blows up somewhere in the interval? (like $\int_0^{1} \frac{1}{\sqrt{x}} \, dx$)

These are improper integrals. They require special handling because we can't just plug infinity into our antiderivative!

The key idea: Replace the "problem" with a limit, then evaluate.

Two Types of Improper Integrals

Type 1: Infinite Limits of Integration

The interval extends to $\infty$ or $-\infty$.

$$\int_a^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_a^{t} f(x) \, dx$$

$$\int_{-\infty}^{b} f(x) \, dx = \lim_{t \to -\infty} \int_t^{b} f(x) \, dx$$

Type 2: Discontinuous Integrand

The function has a vertical asymptote at $x = c$ in $[a, b]$.

If the discontinuity is at $x = b$:

$$\int_a^{b} f(x) \, dx = \lim_{t \to b^-} \int_a^{t} f(x) \, dx$$

If the discontinuity is at $x = a$:

$$\int_a^{b} f(x) \, dx = \lim_{t \to a^+} \int_t^{b} f(x) \, dx$$

Convergent vs Divergent

  • Convergent: The limit exists and equals a finite number
  • Divergent: The limit is $\pm\infty$ or doesn't exist

Example 1: Infinite Upper Limit

Problem: Evaluate $\int_1^{\infty} \frac{1}{x^2} \, dx$

Step 1: Replace $\infty$ with a limit

$$\int_1^{\infty} \frac{1}{x^2} \, dx = \lim_{t \to \infty} \int_1^{t} \frac{1}{x^2} \, dx$$

Step 2: Evaluate the definite integral

$$= \lim_{t \to \infty} \left[ -\frac{1}{x} \right]_1^{t}$$

$$= \lim_{t \to \infty} \left( -\frac{1}{t} - \left(-\frac{1}{1}\right) \right)$$

$$= \lim_{t \to \infty} \left( -\frac{1}{t} + 1 \right)$$

Step 3: Evaluate the limit

As $t \to \infty$, $\frac{1}{t} \to 0$

$$= 0 + 1 = \boxed{1}$$

The integral converges to 1.


Example 2: Infinite Upper Limit (Divergent)

Problem: Evaluate $\int_1^{\infty} \frac{1}{x} \, dx$

Step 1: Replace $\infty$ with a limit

$$\int_1^{\infty} \frac{1}{x} \, dx = \lim_{t \to \infty} \int_1^{t} \frac{1}{x} \, dx$$

Step 2: Evaluate the definite integral

$$= \lim_{t \to \infty} \left[ \ln|x| \right]_1^{t}$$

$$= \lim_{t \to \infty} \left( \ln t - \ln 1 \right)$$

$$= \lim_{t \to \infty} \ln t$$

Step 3: Evaluate the limit

As $t \to \infty$, $\ln t \to \infty$

$$= \boxed{\text{Diverges}}$$


Example 3: Both Limits Infinite

Problem: Evaluate $\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx$

Step 1: Split at any convenient point

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} \, dx = \int_{-\infty}^{0} \frac{1}{1+x^2} \, dx + \int_{0}^{\infty} \frac{1}{1+x^2} \, dx$$

Step 2: Evaluate each piece

For the right piece:

$$\int_{0}^{\infty} \frac{1}{1+x^2} \, dx = \lim_{t \to \infty} \left[ \arctan x \right]_0^{t}$$

$$= \lim_{t \to \infty} (\arctan t - \arctan 0)$$

$$= \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

For the left piece:

$$\int_{-\infty}^{0} \frac{1}{1+x^2} \, dx = \lim_{t \to -\infty} \left[ \arctan x \right]_t^{0}$$

$$= \arctan 0 - \lim_{t \to -\infty} \arctan t$$

$$= 0 - \left(-\frac{\pi}{2}\right) = \frac{\pi}{2}$$

Step 3: Add the pieces

$$= \frac{\pi}{2} + \frac{\pi}{2} = \boxed{\pi}$$


Example 4: Discontinuity at Upper Limit

Problem: Evaluate $\int_0^{1} \frac{1}{\sqrt{x}} \, dx$

Step 1: Identify the problem

$f(x) = \frac{1}{\sqrt{x}}$ is undefined at $x = 0$ (blows up to $\infty$).

The discontinuity is at the lower limit.

Step 2: Replace with a limit

$$\int_0^{1} \frac{1}{\sqrt{x}} \, dx = \lim_{t \to 0^+} \int_t^{1} \frac{1}{\sqrt{x}} \, dx$$

Step 3: Evaluate the integral

$$= \lim_{t \to 0^+} \left[ 2\sqrt{x} \right]_t^{1}$$

$$= \lim_{t \to 0^+} \left( 2\sqrt{1} - 2\sqrt{t} \right)$$

$$= \lim_{t \to 0^+} \left( 2 - 2\sqrt{t} \right)$$

Step 4: Evaluate the limit

As $t \to 0^+$, $\sqrt{t} \to 0$

$$= 2 - 0 = \boxed{2}$$


Example 5: Discontinuity Inside the Interval

Problem: Evaluate $\int_{-1}^{1} \frac{1}{x^2} \, dx$

Step 1: Identify the problem

$f(x) = \frac{1}{x^2}$ has a vertical asymptote at $x = 0$, which is inside $[-1, 1]$.

Step 2: Split at the discontinuity

$$\int_{-1}^{1} \frac{1}{x^2} \, dx = \int_{-1}^{0} \frac{1}{x^2} \, dx + \int_{0}^{1} \frac{1}{x^2} \, dx$$

Step 3: Evaluate each piece

For the right piece:

$$\int_{0}^{1} \frac{1}{x^2} \, dx = \lim_{t \to 0^+} \int_t^{1} \frac{1}{x^2} \, dx$$

$$= \lim_{t \to 0^+} \left[ -\frac{1}{x} \right]_t^{1}$$

$$= \lim_{t \to 0^+} \left( -1 + \frac{1}{t} \right)$$

As $t \to 0^+$, $\frac{1}{t} \to +\infty$

This piece diverges!

Step 4: Conclusion

If either piece diverges, the whole integral diverges.

$$\boxed{\text{Diverges}}$$

⚠️ Warning: You cannot just compute $\left[-\frac{1}{x}\right]_{-1}^{1} = -1 - 1 = -2$. This ignores the discontinuity and gives a wrong answer!


The p-Test for $\int_1^{\infty} \frac{1}{x^p} \, dx$

This integral comes up often:

$$\int_1^{\infty} \frac{1}{x^p} \, dx$$

Rule:

  • Converges if $p > 1$
  • Diverges if $p \leq 1$

Examples:

  • $\int_1^{\infty} \frac{1}{x^2} \, dx$ → converges ($p = 2 > 1$)
  • $\int_1^{\infty} \frac{1}{x} \, dx$ → diverges ($p = 1$)
  • $\int_1^{\infty} \frac{1}{\sqrt{x}} \, dx$ → diverges ($p = 0.5 < 1$)

Common Mistakes and Misunderstandings

❌ Mistake: Ignoring discontinuities inside the interval

Wrong: $\int_{-1}^{1} \frac{1}{x^2} \, dx = \left[-\frac{1}{x}\right]_{-1}^{1} = -2$

Why it's wrong: There's a vertical asymptote at $x = 0$. You must split and check each piece.

Correct: Split at $x = 0$, evaluate both improper integrals. (This one diverges.)


❌ Mistake: Forgetting the limit notation

Wrong: Writing $\int_1^{\infty} \frac{1}{x^2} \, dx = \left[-\frac{1}{x}\right]_1^{\infty} = 0 + 1 = 1$

Why it's wrong: You can't plug $\infty$ directly into an expression.

Correct: Write $\lim_{t \to \infty} \left[-\frac{1}{x}\right]_1^{t}$, then evaluate the limit.


❌ Mistake: Not splitting $\int_{-\infty}^{\infty}$

Wrong: Treating $\int_{-\infty}^{\infty} f(x) \, dx$ as a single limit

Why it's wrong: Both ends need separate limits. If either diverges, the whole thing diverges.

Correct: Split into $\int_{-\infty}^{0} + \int_{0}^{\infty}$ and evaluate each with its own limit.

Formulas & Reference

Improper Integral: Infinite Upper Limit

$$\int_a^{\infty} f(x) \, dx = \lim_{t \to \infty} \int_a^{t} f(x) \, dx$$

Replace the infinite upper limit with a variable t, then take the limit as t approaches infinity.

Variables:
$a$:
the finite lower limit
$t$:
temporary upper limit that approaches infinity
$f(x)$:
the function being integrated

Improper Integral: Infinite Lower Limit

$$\int_{-\infty}^{b} f(x) \, dx = \lim_{t \to -\infty} \int_t^{b} f(x) \, dx$$

Replace the infinite lower limit with a variable t, then take the limit as t approaches negative infinity.

Variables:
$b$:
the finite upper limit
$t$:
temporary lower limit that approaches negative infinity
$f(x)$:
the function being integrated

Improper Integral: Discontinuity at Endpoint

$$\int_a^{b} f(x) \, dx = \lim_{t \to b^-} \int_a^{t} f(x) \, dx$$

If f(x) has a vertical asymptote at x = b, approach it from the left with a limit. Similarly for discontinuity at x = a, approach from the right.

Variables:
$a$:
lower limit
$b$:
upper limit (where discontinuity occurs in this example)
$t$:
approaches the discontinuity from inside the interval

The p-Test

$$\int_1^{\infty} \frac{1}{x^p} \, dx$$

Converges if p > 1, diverges if p ≤ 1. Quick way to determine convergence without computing.

Variables:
$p$:
the exponent (p > 1 means convergent, p ≤ 1 means divergent)
Courses Using This Skill

This skill is taught in the following courses. Create an account to access practice exercises and full course materials.