Convergence/Divergence of Series for MATH 101 A

This skill appears on:

Lesson

When Does an Infinite Sum Make Sense?

Adding infinitely many numbers sounds impossible — and sometimes it is! The series $1 + 2 + 3 + 4 + \cdots$ grows forever. But $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots$ adds up to exactly 1. The difference? Convergence.

A series converges if its partial sums approach a finite number. It diverges if they don't.


The Definition

Given a series $\displaystyle\sum_{n=1}^{\infty} a_n$, let $S_N$ be the $N$th partial sum:

$$S_N = a_1 + a_2 + \cdots + a_N$$

  • If $\displaystyle\lim_{N \to \infty} S_N = L$ (a finite number), the series converges to $L$
  • If the limit doesn't exist or is infinite, the series diverges

The Divergence Test (nth Term Test)

This is the simplest and most important first check for any series.

Theorem: If $\displaystyle\sum_{n=1}^{\infty} a_n$ converges, then $\displaystyle\lim_{n \to \infty} a_n = 0$.

Contrapositive (the useful form):

$$\text{If } \lim_{n \to \infty} a_n \neq 0, \text{ then } \sum a_n \text{ diverges.}$$

⚠️ Critical Warning

The Divergence Test can only prove divergence, never convergence!

If $\lim_{n \to \infty} a_n = 0$, you learn nothing — the series might converge or diverge.

Example: $\displaystyle\sum \frac{1}{n}$ has $\lim_{n \to \infty} \frac{1}{n} = 0$, but the series diverges (it's the harmonic series).


Example 1: Divergence Test — Diverges

Problem: Determine if $\displaystyle\sum_{n=1}^{\infty} \frac{n}{2n+1}$ converges or diverges.

Apply the Divergence Test. Find $\displaystyle\lim_{n \to \infty} a_n$:

$$\lim_{n \to \infty} \frac{n}{2n+1} = \lim_{n \to \infty} \frac{1}{2 + \frac{1}{n}} = \frac{1}{2}$$

Since $\displaystyle\lim_{n \to \infty} a_n = \frac{1}{2} \neq 0$:

$$\boxed{\text{The series diverges by the Divergence Test}}$$


Example 2: Divergence Test — Diverges

Problem: Determine if $\displaystyle\sum_{n=1}^{\infty} (-1)^n$ converges or diverges.

$$\lim_{n \to \infty} (-1)^n \text{ does not exist}$$

The terms alternate between $-1$ and $1$ forever.

Since the limit doesn't exist (and certainly isn't 0):

$$\boxed{\text{The series diverges by the Divergence Test}}$$


Example 3: Divergence Test — Inconclusive

Problem: Use the Divergence Test on $\displaystyle\sum_{n=1}^{\infty} \frac{1}{n^2}$.

$$\lim_{n \to \infty} \frac{1}{n^2} = 0$$

Since the limit equals 0, the Divergence Test is inconclusive.

$$\boxed{\text{The Divergence Test tells us nothing — need another test}}$$

(This series actually converges to $\frac{\pi^2}{6}$, but we need other methods to show it.)


Finding the Sum Using Partial Sums

When you can find a formula for $S_N$, you can determine convergence by taking the limit.

Example 4: Find the Sum

Problem: Find the sum of $\displaystyle\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, or show it diverges.

Step 1: Use partial fractions

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

Step 2: Write out the partial sum

$$S_N = \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \cdots + \left(\frac{1}{N} - \frac{1}{N+1}\right)$$

Step 3: Notice the telescoping!

Most terms cancel:

$$S_N = 1 - \frac{1}{N+1}$$

Step 4: Take the limit

$$\lim_{N \to \infty} S_N = \lim_{N \to \infty} \left(1 - \frac{1}{N+1}\right) = 1 - 0 = 1$$

$$\boxed{\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1}$$


Example 5: Partial Sum Formula Given

Problem: If $S_N = \dfrac{3N}{N+2}$, find $\displaystyle\sum_{n=1}^{\infty} a_n$.

The sum equals the limit of the partial sums:

$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \frac{3N}{N+2}$$

Divide top and bottom by $N$:

$$= \lim_{N \to \infty} \frac{3}{1 + \frac{2}{N}} = \frac{3}{1 + 0} = 3$$

$$\boxed{\sum_{n=1}^{\infty} a_n = 3}$$


Example 6: Divergence via Partial Sums

Problem: Determine if $\displaystyle\sum_{n=1}^{\infty} 1$ converges or diverges.

The partial sums are:

$$S_N = 1 + 1 + 1 + \cdots + 1 = N$$

$$\lim_{N \to \infty} S_N = \lim_{N \to \infty} N = \infty$$

$$\boxed{\text{The series diverges (to } \infty\text{)}}$$


Finding $a_n$ from $S_n$

Sometimes you're given the partial sum formula and need to find the terms.

Key relationship:

$$a_n = S_n - S_{n-1} \quad \text{for } n \geq 2$$

$$a_1 = S_1$$


Example 7: Find the Terms

Problem: If $S_n = 3n^2 + 2n$, find $a_n$ and $a_5$.

For $n \geq 2$:

$$a_n = S_n - S_{n-1}$$

$$= (3n^2 + 2n) - (3(n-1)^2 + 2(n-1))$$

$$= 3n^2 + 2n - 3(n^2 - 2n + 1) - 2n + 2$$

$$= 3n^2 + 2n - 3n^2 + 6n - 3 - 2n + 2$$

$$= 6n - 1$$

Check $a_1$:

$$S_1 = 3(1)^2 + 2(1) = 5$$

Using our formula: $a_1 = 6(1) - 1 = 5$ ✓

So $a_n = 6n - 1$ works for all $n \geq 1$.

Find $a_5$:

$$a_5 = 6(5) - 1 = 29$$

$$\boxed{a_n = 6n - 1, \quad a_5 = 29}$$


Properties of Convergent Series

If $\displaystyle\sum a_n = A$ and $\displaystyle\sum b_n = B$ (both converge), then:

Property Result
$\displaystyle\sum c \cdot a_n$ $= c \cdot A$
$\displaystyle\sum (a_n + b_n)$ $= A + B$
$\displaystyle\sum (a_n - b_n)$ $= A - B$

Warning: These only apply when both series converge!


Example 8: Using Properties

Problem: If $\displaystyle\sum_{n=1}^{\infty} a_n = 4$ and $\displaystyle\sum_{n=1}^{\infty} b_n = -2$, find $\displaystyle\sum_{n=1}^{\infty} (3a_n + 5b_n)$.

$$\sum_{n=1}^{\infty} (3a_n + 5b_n) = 3\sum_{n=1}^{\infty} a_n + 5\sum_{n=1}^{\infty} b_n$$

$$= 3(4) + 5(-2) = 12 - 10 = \boxed{2}$$


Adding or Removing Finite Terms

Adding or removing a finite number of terms doesn't change whether a series converges or diverges (though it changes the sum).

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \cdots + a_k + \sum_{n=k+1}^{\infty} a_n$$

If one side converges, so does the other.


Example 9: Changing the Starting Index

Problem: If $\displaystyle\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$, find $\displaystyle\sum_{n=3}^{\infty} \frac{1}{n(n+1)}$.

The series starting at $n = 3$ is missing the first two terms:

$$\sum_{n=3}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} - \frac{1}{1 \cdot 2} - \frac{1}{2 \cdot 3}$$

$$= 1 - \frac{1}{2} - \frac{1}{6} = 1 - \frac{3}{6} - \frac{1}{6} = 1 - \frac{4}{6} = \frac{2}{6} = \boxed{\frac{1}{3}}$$


Quick Summary: Convergence vs Divergence

If you observe... Conclusion
$\lim_{n \to \infty} a_n \neq 0$ Diverges (Divergence Test)
$\lim_{n \to \infty} a_n = 0$ Inconclusive — need other tests
$\lim_{N \to \infty} S_N = L$ (finite) Converges to $L$
$\lim_{N \to \infty} S_N = \pm\infty$ Diverges
$\lim_{N \to \infty} S_N$ doesn't exist Diverges

Common Mistakes and Misunderstandings

❌ Mistake: Using the Divergence Test to prove convergence

Wrong: "$\lim_{n \to \infty} \frac{1}{n} = 0$, so by the Divergence Test, $\sum \frac{1}{n}$ converges."

Why it's wrong: The Divergence Test can ONLY prove divergence. When the limit is 0, the test tells you absolutely nothing.

Correct: When $\lim a_n = 0$, say "The Divergence Test is inconclusive" and use another test.


❌ Mistake: Confusing $a_n \to 0$ with $\sum a_n$ converging

Wrong: "The terms get smaller, so the series must converge."

Why it's wrong: The harmonic series $\sum \frac{1}{n}$ has terms going to 0, but it diverges! Terms approaching 0 is necessary but not sufficient for convergence.

Correct: $a_n \to 0$ is required for convergence, but you need additional tests to confirm it.


❌ Mistake: Forgetting $a_1 = S_1$ when finding terms

Wrong: Using $a_n = S_n - S_{n-1}$ for $n = 1$.

Why it's wrong: $S_0$ is not defined (there's no "sum of zero terms" in most contexts). The formula only works for $n \geq 2$.

Correct: Always find $a_1$ directly as $a_1 = S_1$, then use $a_n = S_n - S_{n-1}$ for $n \geq 2$.


❌ Mistake: Thinking convergent series can be rearranged freely

Wrong: "Since $\sum a_n = L$, I can add the terms in any order and still get $L$."

Why it's wrong: This is only true for absolutely convergent series. For conditionally convergent series (like the alternating harmonic series), rearranging terms can give ANY sum you want — or even diverge!

Correct: Be careful with rearrangements. For now, keep terms in their original order.

Formulas & Reference

Series Convergence Definition

$$\sum_{n=1}^{\infty} a_n = L \quad \text{means} \quad \lim_{N \to \infty} S_N = L$$

A series converges to L if the limit of its partial sums equals L. If this limit doesn't exist or is infinite, the series diverges.

Variables:
$S_N$:
the Nth partial sum: S_N = a_1 + a_2 + ... + a_N
$L$:
the sum of the series (a finite number)

The Divergence Test (nth Term Test)

$$\text{If } \lim_{n \to \infty} a_n \neq 0, \text{ then } \sum a_n \text{ diverges}$$

If the terms don't approach 0, the series diverges. WARNING: If the limit IS 0, this test is inconclusive — the series might converge or diverge!

Variables:
$a_n$:
the nth term of the series

Finding Terms from Partial Sums

$$a_n = S_n - S_{n-1} \quad \text{for } n \geq 2, \quad a_1 = S_1$$

To find the nth term when given a partial sum formula, subtract consecutive partial sums. Remember to find a_1 separately since S_0 is undefined.

Variables:
$a_n$:
the nth term
$S_n$:
partial sum of first n terms
$S_{n-1}$:
partial sum of first (n-1) terms
Courses Using This Skill

This skill is taught in the following courses. Create an account to access practice exercises and full course materials.