Series – The Basics for MATH 141

Exam Relevance for MATH 141

Likelihood of appearing: Low

Series notation in MATH 141 is setup for convergence tests. Rarely standalone questions.

Lesson

What is a Series?

A series is what you get when you add up the terms of a sequence.

If you have a sequence $a_1, a_2, a_3, \ldots$, the corresponding series is:

$$a_1 + a_2 + a_3 + \cdots$$


Sigma Notation

We use the Greek letter sigma ($\Sigma$) to write series compactly:

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$$

Reading the notation:

$$\sum_{n=1}^{\infty} a_n$$

  • $\Sigma$ = "sum"
  • $n = 1$ = starting index (start at $n = 1$)
  • $\infty$ = ending index (continue forever)
  • $a_n$ = the terms being added

Example:

$$\sum_{n=1}^{\infty} \frac{1}{n} = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$


Finite vs Infinite Series

Finite series: Has a definite number of terms

$$\sum_{n=1}^{5} n^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 1 + 4 + 9 + 16 + 25 = 55$$

Infinite series: Continues forever

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \cdots$$

The big question for infinite series: Does the sum approach a finite number, or does it blow up to infinity (or fail to settle)?


Partial Sums

Since we can't literally add infinitely many numbers, we define series through partial sums.

The $n$th partial sum $S_n$ is the sum of the first $n$ terms:

$$S_1 = a_1$$ $$S_2 = a_1 + a_2$$ $$S_3 = a_1 + a_2 + a_3$$ $$S_n = a_1 + a_2 + \cdots + a_n = \sum_{k=1}^{n} a_k$$

The infinite series equals the limit of the partial sums:

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n$$


Example 1: Writing Out Partial Sums

Problem: For the series $\displaystyle\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$, write out $S_1$, $S_2$, $S_3$, and $S_4$.

First, identify the terms: $a_n = \dfrac{1}{n(n+1)}$

$$a_1 = \frac{1}{1 \cdot 2} = \frac{1}{2}, \quad a_2 = \frac{1}{2 \cdot 3} = \frac{1}{6}, \quad a_3 = \frac{1}{3 \cdot 4} = \frac{1}{12}, \quad a_4 = \frac{1}{4 \cdot 5} = \frac{1}{20}$$

Now build the partial sums:

$$S_1 = \frac{1}{2}$$

$$S_2 = \frac{1}{2} + \frac{1}{6} = \frac{3}{6} + \frac{1}{6} = \frac{4}{6} = \frac{2}{3}$$

$$S_3 = \frac{2}{3} + \frac{1}{12} = \frac{8}{12} + \frac{1}{12} = \frac{9}{12} = \frac{3}{4}$$

$$S_4 = \frac{3}{4} + \frac{1}{20} = \frac{15}{20} + \frac{1}{20} = \frac{16}{20} = \frac{4}{5}$$

$$\boxed{S_1 = \frac{1}{2}, \quad S_2 = \frac{2}{3}, \quad S_3 = \frac{3}{4}, \quad S_4 = \frac{4}{5}}$$

Notice the pattern: $S_n = \dfrac{n}{n+1}$. As $n \to \infty$, $S_n \to 1$, so the series converges to 1.


Expanding Series from Sigma Notation

Example 2: Expand a Series

Problem: Write out the first four terms of $\displaystyle\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$.

Note this starts at $n = 0$!

$$n = 0: \quad \frac{(-1)^0}{0!} = \frac{1}{1} = 1$$

$$n = 1: \quad \frac{(-1)^1}{1!} = \frac{-1}{1} = -1$$

$$n = 2: \quad \frac{(-1)^2}{2!} = \frac{1}{2}$$

$$n = 3: \quad \frac{(-1)^3}{3!} = \frac{-1}{6}$$

$$\boxed{\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} = 1 - 1 + \frac{1}{2} - \frac{1}{6} + \cdots}$$

(This series actually converges to $e^{-1} = \frac{1}{e}$!)


Example 3: Different Starting Index

Problem: Write out the first four terms of $\displaystyle\sum_{n=2}^{\infty} \frac{1}{n \ln n}$.

This starts at $n = 2$ (since $\ln 1 = 0$ would cause division by zero).

$$n = 2: \quad \frac{1}{2 \ln 2}$$

$$n = 3: \quad \frac{1}{3 \ln 3}$$

$$n = 4: \quad \frac{1}{4 \ln 4}$$

$$n = 5: \quad \frac{1}{5 \ln 5}$$

$$\boxed{\sum_{n=2}^{\infty} \frac{1}{n \ln n} = \frac{1}{2 \ln 2} + \frac{1}{3 \ln 3} + \frac{1}{4 \ln 4} + \frac{1}{5 \ln 5} + \cdots}$$


Writing Series in Sigma Notation

Example 4: Convert to Sigma Notation

Problem: Write in sigma notation: $\dfrac{1}{3} + \dfrac{1}{9} + \dfrac{1}{27} + \dfrac{1}{81} + \cdots$

Identify the pattern:

  • $\frac{1}{3} = \frac{1}{3^1}$
  • $\frac{1}{9} = \frac{1}{3^2}$
  • $\frac{1}{27} = \frac{1}{3^3}$
  • $\frac{1}{81} = \frac{1}{3^4}$

The general term is $\dfrac{1}{3^n}$.

$$\boxed{\sum_{n=1}^{\infty} \frac{1}{3^n}}$$

Or equivalently: $\displaystyle\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$


Example 5: Alternating Series to Sigma Notation

Problem: Write in sigma notation: $1 - \dfrac{1}{2} + \dfrac{1}{3} - \dfrac{1}{4} + \dfrac{1}{5} - \cdots$

The denominators are $1, 2, 3, 4, 5, \ldots$ → just $n$

The signs alternate: $+, -, +, -, +, \ldots$

Since it starts positive, use $(-1)^{n+1}$:

$$\boxed{\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}}$$

(This is the famous alternating harmonic series, which converges to $\ln 2$.)


Example 6: Recognizing Factorials

Problem: Write in sigma notation: $\dfrac{1}{2} + \dfrac{1}{6} + \dfrac{1}{24} + \dfrac{1}{120} + \cdots$

Recognize the denominators: $2 = 2!$, $6 = 3!$, $24 = 4!$, $120 = 5!$

The general term is $\dfrac{1}{n!}$ starting at $n = 2$.

$$\boxed{\sum_{n=2}^{\infty} \frac{1}{n!}}$$


Computing Finite Sums

Example 7: Evaluate a Finite Sum

Problem: Evaluate $\displaystyle\sum_{k=1}^{4} (2k - 1)$.

Write out and add each term:

$$k = 1: \quad 2(1) - 1 = 1$$ $$k = 2: \quad 2(2) - 1 = 3$$ $$k = 3: \quad 2(3) - 1 = 5$$ $$k = 4: \quad 2(4) - 1 = 7$$

$$\sum_{k=1}^{4} (2k - 1) = 1 + 3 + 5 + 7 = \boxed{16}$$

(Note: This is the sum of the first 4 odd numbers, which equals $4^2 = 16$!)


Example 8: Sum with Powers

Problem: Evaluate $\displaystyle\sum_{i=0}^{3} 2^i$.

$$i = 0: \quad 2^0 = 1$$ $$i = 1: \quad 2^1 = 2$$ $$i = 2: \quad 2^2 = 4$$ $$i = 3: \quad 2^3 = 8$$

$$\sum_{i=0}^{3} 2^i = 1 + 2 + 4 + 8 = \boxed{15}$$


Index Shifting

The same series can be written with different starting indices. This is called index shifting or re-indexing.

Example 9: Equivalent Forms

Problem: Show that $\displaystyle\sum_{n=1}^{\infty} \frac{1}{n^2}$ and $\displaystyle\sum_{n=0}^{\infty} \frac{1}{(n+1)^2}$ are the same series.

Expand the first series: $$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots = 1 + \frac{1}{4} + \frac{1}{9} + \cdots$$

Expand the second series: $$\sum_{n=0}^{\infty} \frac{1}{(n+1)^2} = \frac{1}{(0+1)^2} + \frac{1}{(1+1)^2} + \frac{1}{(2+1)^2} + \cdots = 1 + \frac{1}{4} + \frac{1}{9} + \cdots$$

$$\boxed{\text{Same series, different notation}}$$

The substitution: Let $m = n + 1$. When $n = 0$, $m = 1$. Replace $n$ with $m - 1$.


Properties of Series

If $\sum a_n$ and $\sum b_n$ both converge, then:

1. Constant Multiple: $$\sum_{n=1}^{\infty} c \cdot a_n = c \cdot \sum_{n=1}^{\infty} a_n$$

2. Sum/Difference: $$\sum_{n=1}^{\infty} (a_n \pm b_n) = \sum_{n=1}^{\infty} a_n \pm \sum_{n=1}^{\infty} b_n$$

⚠️ Warning: These only work when the series converge!


Example 10: Using Properties

Problem: If $\displaystyle\sum_{n=1}^{\infty} a_n = 3$ and $\displaystyle\sum_{n=1}^{\infty} b_n = 7$, find $\displaystyle\sum_{n=1}^{\infty} (2a_n - b_n)$.

$$\sum_{n=1}^{\infty} (2a_n - b_n) = 2\sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n = 2(3) - 7 = \boxed{-1}$$


Common Finite Sum Formulas

These are useful for computing partial sums:

Sum Formula
$\displaystyle\sum_{k=1}^{n} k = 1 + 2 + \cdots + n$ $\dfrac{n(n+1)}{2}$
$\displaystyle\sum_{k=1}^{n} k^2$ $\dfrac{n(n+1)(2n+1)}{6}$
$\displaystyle\sum_{k=1}^{n} k^3$ $\left[\dfrac{n(n+1)}{2}\right]^2$

Example 11: Using Sum Formulas

Problem: Evaluate $\displaystyle\sum_{k=1}^{100} k$.

Using the formula:

$$\sum_{k=1}^{100} k = \frac{100(101)}{2} = \frac{10100}{2} = \boxed{5050}$$

This is the famous result Gauss supposedly discovered as a child!


Common Mistakes and Misunderstandings

❌ Mistake: Confusing the index variable

Wrong: Thinking $\displaystyle\sum_{n=1}^{5} n^2$ and $\displaystyle\sum_{k=1}^{5} k^2$ are different.

Why it's wrong: The index is a "dummy variable" — its name doesn't matter. Both equal $1 + 4 + 9 + 16 + 25 = 55$.

Correct: The letter used for the index ($n$, $k$, $i$, $j$) doesn't change the sum.


❌ Mistake: Forgetting to check the starting index

Wrong: For $\displaystyle\sum_{n=0}^{\infty} x^n$, saying the first term is $x$.

Why it's wrong: When $n = 0$, the first term is $x^0 = 1$, not $x$.

Correct: Always plug in the starting index to find the first term. Here: $x^0 = 1$.


❌ Mistake: Thinking $\sum a_n$ equals $a_n$

Wrong: "$\displaystyle\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{1}{n^2}$"

Why it's wrong: The sum $\sum$ adds up ALL the terms. $a_n = \frac{1}{n^2}$ is just ONE term.

Correct: $\displaystyle\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots = \frac{\pi^2}{6}$


❌ Mistake: Adding infinite series like finite sums

Wrong: "I'll just add up all the terms $1 + 2 + 3 + 4 + \cdots$ and get the answer."

Why it's wrong: You can't literally add infinitely many numbers. Infinite series are defined as limits of partial sums.

Correct: $\displaystyle\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} S_n$ where $S_n$ is the $n$th partial sum.

Formulas & Reference

Infinite Series as Limit of Partial Sums

$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{n=1}^{N} a_n$$

An infinite series is defined as the limit of its partial sums. If this limit exists and is finite, the series converges. Otherwise, it diverges.

Variables:
$a_n$:
the nth term of the series
$S_N$:
the Nth partial sum (sum of first N terms)

Sum of First n Positive Integers

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \cdots + n = \frac{n(n+1)}{2}$$

The sum of the first n positive integers. Useful for computing partial sums and evaluating series.

Variables:
$n$:
the number of terms
$k$:
the index variable

Sum of First n Squares

$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \cdots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

The sum of the squares of the first n positive integers.

Variables:
$n$:
the number of terms
$k$:
the index variable

Linearity of Convergent Series

$$\sum_{n=1}^{\infty} (c \cdot a_n + d \cdot b_n) = c \sum_{n=1}^{\infty} a_n + d \sum_{n=1}^{\infty} b_n$$

If both series converge, you can factor out constants and split sums. This only works for convergent series!

Variables:
$c, d$:
constants
$a_n, b_n$:
terms of convergent series
Courses Using This Skill

This skill is taught in the following courses. Create an account to access practice exercises and full course materials.