Integrals Involving Trig Functions for MATH 141

Exam Relevance for MATH 141

Likelihood of appearing: Medium

Trig integrals (sin^m cos^n) appear on MATH 141 exams. Know strategies for odd/even powers.

Lesson

Understanding Trigonometric Integrals

When you encounter integrals like $\int \sin^4 x \, dx$ or $\int \sec^3 x \tan x \, dx$, basic substitution often isn't enough. These integrals require special techniques based on trig identities and strategic manipulation.

The good news: once you learn a few patterns, most trig integrals follow predictable strategies. This lesson covers the main cases you'll see in Calculus.

Key Identities to Know

Before diving into techniques, make sure you know these identities:

Pythagorean Identities:

  • $\sin^2 x + \cos^2 x = 1$
  • $\tan^2 x + 1 = \sec^2 x$
  • $1 + \cot^2 x = \csc^2 x$

Power-Reducing (Half-Angle) Identities:

  • $\sin^2 x = \frac{1 - \cos 2x}{2}$
  • $\cos^2 x = \frac{1 + \cos 2x}{2}$

Double Angle Identity:

  • $\sin x \cos x = \frac{1}{2}\sin 2x$

Strategy Overview

Integral Type Strategy
$\int \sin^m x \cos^n x \, dx$ (odd power) Save one, convert rest with $\sin^2 + \cos^2 = 1$
$\int \sin^m x \cos^n x \, dx$ (both even) Use power-reducing identities
$\int \tan^m x \sec^n x \, dx$ Depends on powers (see below)
$\int \sec x \, dx$ or $\int \csc x \, dx$ Memorize or use special trick

Example 1: Odd Power of Sine

Problem: Find $\int \sin^3 x \cos^2 x \, dx$

Step 1: Identify the strategy

We have an odd power of sine (3).

Strategy: Save one $\sin x$ for $du$, convert the rest to cosines.

Step 2: Rewrite and substitute

$$\int \sin^3 x \cos^2 x \, dx$$

$$= \int \sin^2 x \cos^2 x \cdot \sin x \, dx$$

Use $\sin^2 x = 1 - \cos^2 x$:

$$= \int (1 - \cos^2 x) \cos^2 x \cdot \sin x \, dx$$

Step 3: U-substitution

Let $u = \cos x$, so $du = -\sin x \, dx$

$$= -\int (1 - u^2) u^2 \, du$$

$$= -\int (u^2 - u^4) \, du$$

Step 4: Integrate and back-substitute

$$= -\left( \frac{u^3}{3} - \frac{u^5}{5} \right) + C$$

$$= -\frac{\cos^3 x}{3} + \frac{\cos^5 x}{5} + C$$

$$= \boxed{\frac{\cos^5 x}{5} - \frac{\cos^3 x}{3} + C}$$


Example 2: Both Powers Even (Power-Reducing)

Problem: Find $\int \sin^2 x \, dx$

Step 1: Apply the power-reducing identity

Since both powers are even (we have $\sin^2 x$ and implicitly $\cos^0 x = 1$), use:

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

Step 2: Substitute and integrate

$$\int \sin^2 x \, dx = \int \frac{1 - \cos 2x}{2} \, dx$$

$$= \frac{1}{2} \int (1 - \cos 2x) \, dx$$

$$= \frac{1}{2} \left( x - \frac{\sin 2x}{2} \right) + C$$

$$= \boxed{\frac{x}{2} - \frac{\sin 2x}{4} + C}$$


Example 3: Secant and Tangent (Even Secant Power)

Problem: Find $\int \tan^3 x \sec^2 x \, dx$

Step 1: Identify the strategy

We have $\sec^2 x$, which is the derivative of $\tan x$!

This suggests: let $u = \tan x$.

Step 2: Substitute

Let $u = \tan x$, so $du = \sec^2 x \, dx$

$$\int \tan^3 x \sec^2 x \, dx = \int u^3 \, du$$

Step 3: Integrate and back-substitute

$$= \frac{u^4}{4} + C$$

$$= \boxed{\frac{\tan^4 x}{4} + C}$$


Example 4: Secant and Tangent (Odd Tangent Power)

Problem: Find $\int \tan^3 x \sec x \, dx$

Step 1: Identify the strategy

Odd power of tangent with at least one $\sec x$.

Strategy: Save $\sec x \tan x$ for $du$, convert rest to secants.

Step 2: Rewrite

$$\int \tan^3 x \sec x \, dx$$

$$= \int \tan^2 x \cdot \sec x \tan x \, dx$$

Use $\tan^2 x = \sec^2 x - 1$:

$$= \int (\sec^2 x - 1) \sec x \tan x \, dx$$

Step 3: Substitute

Let $u = \sec x$, so $du = \sec x \tan x \, dx$

$$= \int (u^2 - 1) \, du$$

Step 4: Integrate and back-substitute

$$= \frac{u^3}{3} - u + C$$

$$= \boxed{\frac{\sec^3 x}{3} - \sec x + C}$$


Example 5: The Secant Integral (Memorize This!)

Problem: Find $\int \sec x \, dx$

Step 1: Use the classic trick

Multiply by $\frac{\sec x + \tan x}{\sec x + \tan x}$:

$$\int \sec x \, dx$$

$$= \int \sec x \cdot \frac{\sec x + \tan x}{\sec x + \tan x} \, dx$$

$$= \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} \, dx$$

Step 2: Recognize the form

The numerator is the derivative of the denominator!

Let $u = \sec x + \tan x$

Then $du = (\sec x \tan x + \sec^2 x) \, dx$

Step 3: Integrate

$$= \int \frac{du}{u} = \ln|u| + C$$

$$= \boxed{\ln|\sec x + \tan x| + C}$$

💡 Tip: Most students just memorize $\int \sec x \, dx = \ln|\sec x + \tan x| + C$. The derivation is clever but rarely needed on exams.


Integrals That Give Logarithms

Sometimes a trig integral simplifies to $\int \frac{1}{u} \, du$, which gives $\ln|u|$. This happens when the numerator is the derivative of the denominator (or can be made into one).

The key pattern: if you see a fraction where the top is (or contains) the derivative of the bottom, think logarithm.

Example 6: Integral Giving Natural Log

Problem: Find $\int \tan x \, dx$

Step 1: Rewrite in terms of sine and cosine

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx$$

Step 2: Recognize the pattern

The numerator $\sin x$ is almost the derivative of $\cos x$.

(Actually, $\frac{d}{dx}[\cos x] = -\sin x$, so we're off by a negative.)

Step 3: Substitute

Let $u = \cos x$, so $du = -\sin x \, dx$

$$= \int \frac{-du}{u} = -\ln|u| + C$$

Step 4: Back-substitute

$$= -\ln|\cos x| + C$$

$$= \boxed{\ln|\sec x| + C}$$

(Using the log rule: $-\ln|a| = \ln|1/a| = \ln|\sec x|$)


Integrals That Give Inverse Trig Functions

Some trig-related integrals produce arctangent or arcsine. These typically involve expressions like $\frac{1}{1+x^2}$ or $\frac{1}{\sqrt{1-x^2}}$.

Key formulas to recognize:

  • $\int \frac{1}{1+x^2} \, dx = \arctan x + C$
  • $\int \frac{1}{a^2+x^2} \, dx = \frac{1}{a}\arctan\frac{x}{a} + C$
Example 7: Integral Giving Arctangent

Problem: Find $\int \frac{1}{9 + x^2} \, dx$

Step 1: Match the formula pattern

Compare to $\int \frac{1}{a^2+x^2} \, dx = \frac{1}{a}\arctan\frac{x}{a} + C$

Here $a^2 = 9$, so $a = 3$.

Step 2: Apply the formula

$$\int \frac{1}{9 + x^2} \, dx = \frac{1}{3}\arctan\frac{x}{3} + C$$

$$= \boxed{\frac{1}{3}\arctan\frac{x}{3} + C}$$

💡 Tip: When you see $\frac{1}{\text{constant} + x^2}$, think arctangent!


Important Results to Memorize

These come up frequently enough that you should know them:

Integral Result
$\int \sec x \, dx$ $\ln\|\sec x + \tan x\| + C$
$\int \csc x \, dx$ $-\ln\|\csc x + \cot x\| + C$
$\int \tan x \, dx$ $-\ln\|\cos x\| + C$ or $\ln\|\sec x\| + C$
$\int \cot x \, dx$ $\ln\|\sin x\| + C$

Common Mistakes and Misunderstandings

❌ Mistake: Using power-reducing when there's an odd power

Wrong approach: For $\int \sin^3 x \, dx$, trying to use $\sin^2 x = \frac{1-\cos 2x}{2}$

Why it's wrong: This makes the problem harder, not easier. You'd get $\sin x \cdot \frac{1-\cos 2x}{2}$, which is messier.

Correct: Use the odd-power strategy. Save one $\sin x$, convert the rest:

$$\int \sin^3 x \, dx = \int (1-\cos^2 x)\sin x \, dx$$

Then substitute $u = \cos x$.


❌ Mistake: Forgetting which identity to use for sec/tan

Confused: "Do I use $\tan^2 x = \sec^2 x - 1$ or $\sec^2 x = \tan^2 x + 1$?"

Clarification: They're the same identity rearranged! Use whichever form helps you:

  • Converting $\tan^2$ to $\sec^2$: use $\tan^2 x = \sec^2 x - 1$
  • Converting $\sec^2$ to $\tan^2$: use $\sec^2 x = \tan^2 x + 1$

❌ Mistake: Wrong substitution choice for sec/tan integrals

Wrong: For $\int \sec^4 x \tan x \, dx$, letting $u = \tan x$

Why it's wrong: $du = \sec^2 x \, dx$, but we only have $\sec^4 x$, not a clean match.

Correct: Let $u = \sec x$, so $du = \sec x \tan x \, dx$

$$\int \sec^4 x \tan x \, dx = \int \sec^3 x \cdot \sec x \tan x \, dx = \int u^3 \, du$$

Formulas & Reference

Power-Reducing Identity (Sine)

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$

Converts sine squared into a form without powers. Use when both sine and cosine have even powers.

Variables:
$\sin^2 x$:
sine squared, which we want to simplify
$\cos 2x$:
cosine of double the angle

Power-Reducing Identity (Cosine)

$$\cos^2 x = \frac{1 + \cos 2x}{2}$$

Converts cosine squared into a form without powers. Use when both sine and cosine have even powers.

Variables:
$\cos^2 x$:
cosine squared, which we want to simplify
$\cos 2x$:
cosine of double the angle

Pythagorean Identity (Sine/Cosine)

$$\sin^2 x + \cos^2 x = 1$$

The fundamental trig identity. Rearrange to convert between sine and cosine: sin²x = 1 - cos²x or cos²x = 1 - sin²x.

Variables:
$\sin^2 x$:
sine squared
$\cos^2 x$:
cosine squared

Pythagorean Identity (Tangent/Secant)

$$\tan^2 x + 1 = \sec^2 x$$

Use to convert between tangent and secant. Rearranged: tan²x = sec²x - 1.

Variables:
$\tan^2 x$:
tangent squared
$\sec^2 x$:
secant squared

Integral of Secant

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

A result worth memorizing. Derived using a clever multiplication trick.

Variables:
$\sec x$:
secant of x
$\tan x$:
tangent of x

Integral of Cosecant

$$\int \csc x \, dx = -\ln|\csc x + \cot x| + C$$

Similar to secant integral. Note the negative sign.

Variables:
$\csc x$:
cosecant of x
$\cot x$:
cotangent of x
Courses Using This Skill

This skill is taught in the following courses. Create an account to access practice exercises and full course materials.