Binomial Series for MATH 141

Exam Relevance for MATH 141

Likelihood of appearing: High

Binomial series appear on MATH 141 finals as a Taylor series application. This late-course topic is weighted heavily.

Lesson

The Binomial Series

The binomial series extends the familiar Binomial Theorem to any exponent—not just positive integers. This lets us expand expressions like $\sqrt{1+x}$, $\frac{1}{(1+x)^3}$, or $(1+x)^{2/3}$ as infinite power series.


The Binomial Theorem (Review)

For positive integer $n$:

$$(1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots + x^n$$

This is a finite sum with $n+1$ terms.

Example: $(1+x)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4$


The Binomial Series (General Case)

For any real exponent $k$ (including fractions, negatives, etc.):

$$(1 + x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n = 1 + kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \cdots$$

Where the generalized binomial coefficient is:

$$\binom{k}{n} = \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}$$

Convergence: This series converges for $|x| < 1$.


Why Non-Integer Exponents Give Infinite Series

When $k$ is a positive integer, the coefficients eventually become zero:

  • $\binom{4}{5} = \frac{4 \cdot 3 \cdot 2 \cdot 1 \cdot 0}{5!} = 0$

But when $k$ is NOT a positive integer, the numerator never hits zero:

  • $\binom{1/2}{5} = \frac{(1/2)(-1/2)(-3/2)(-5/2)(-7/2)}{5!} \neq 0$

The terms keep going forever!


Common Binomial Series to Know

Square Root: $(1+x)^{1/2} = \sqrt{1+x}$

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \cdots$$

Reciprocal Square Root: $(1+x)^{-1/2} = \frac{1}{\sqrt{1+x}}$

$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \cdots$$

Reciprocal: $(1+x)^{-1} = \frac{1}{1+x}$

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \cdots$$

(This is just the geometric series!)

Cube Root: $(1+x)^{1/3} = \sqrt[3]{1+x}$

$$\sqrt[3]{1+x} = 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 - \cdots$$


How to Compute Binomial Coefficients

For $\binom{k}{n}$, multiply $n$ terms in the numerator starting from $k$ and decreasing by 1:

$$\binom{k}{n} = \frac{k \cdot (k-1) \cdot (k-2) \cdots (k-n+1)}{n!}$$

Example: Find $\binom{1/2}{3}$

$$\binom{1/2}{3} = \frac{(1/2)(1/2-1)(1/2-2)}{3!} = \frac{(1/2)(-1/2)(-3/2)}{6} = \frac{3/8}{6} = \frac{1}{16}$$

Example: Find $\binom{-2}{3}$

$$\binom{-2}{3} = \frac{(-2)(-3)(-4)}{3!} = \frac{-24}{6} = -4$$


Example 1: Expanding a Square Root

Problem: Expand $(1+x)^{1/2}$ through $x^3$.

Step 1: Identify $k = 1/2$.

Step 2: Compute each coefficient.

$\binom{1/2}{0} = 1$

$\binom{1/2}{1} = \frac{1/2}{1!} = \frac{1}{2}$

$\binom{1/2}{2} = \frac{(1/2)(-1/2)}{2!} = \frac{-1/4}{2} = -\frac{1}{8}$

$\binom{1/2}{3} = \frac{(1/2)(-1/2)(-3/2)}{3!} = \frac{3/8}{6} = \frac{1}{16}$

Step 3: Write the series.

$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \cdots$$


Example 2: Expanding $(2+x)^4$

Problem: Use the Binomial Theorem to expand $(2+x)^4$.

Step 1: Factor out the 2 to get the $(1 + \text{something})$ form.

$$(2+x)^4 = \left[2\left(1 + \frac{x}{2}\right)\right]^4 = 2^4\left(1 + \frac{x}{2}\right)^4 = 16\left(1 + \frac{x}{2}\right)^4$$

Step 2: Expand $(1 + \frac{x}{2})^4$ using the Binomial Theorem.

$$\left(1 + \frac{x}{2}\right)^4 = \binom{4}{0} + \binom{4}{1}\frac{x}{2} + \binom{4}{2}\left(\frac{x}{2}\right)^2 + \binom{4}{3}\left(\frac{x}{2}\right)^3 + \binom{4}{4}\left(\frac{x}{2}\right)^4$$

Step 3: Calculate the binomial coefficients.

$$\binom{4}{0} = 1, \quad \binom{4}{1} = 4, \quad \binom{4}{2} = 6, \quad \binom{4}{3} = 4, \quad \binom{4}{4} = 1$$

Step 4: Substitute and simplify.

$$= 1 + 4 \cdot \frac{x}{2} + 6 \cdot \frac{x^2}{4} + 4 \cdot \frac{x^3}{8} + 1 \cdot \frac{x^4}{16} = 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16}$$

Step 5: Multiply by 16.

$$16\left(1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16}\right) = 16 + 32x + 24x^2 + 8x^3 + x^4$$

Answer: $(2+x)^4 = 16 + 32x + 24x^2 + 8x^3 + x^4$


Example 3: Negative Exponent

Problem: Expand $\frac{1}{(1-x)^2}$ as a power series.

Step 1: Rewrite as $(1 + u)^k$ form.

$$\frac{1}{(1-x)^2} = (1-x)^{-2} = (1 + (-x))^{-2}$$

So $k = -2$ and we substitute $u = -x$.

Step 2: Write the binomial series.

$$(1+u)^{-2} = \sum_{n=0}^{\infty} \binom{-2}{n} u^n$$

Step 3: Compute coefficients.

$\binom{-2}{0} = 1$

$\binom{-2}{1} = -2$

$\binom{-2}{2} = \frac{(-2)(-3)}{2!} = \frac{6}{2} = 3$

$\binom{-2}{3} = \frac{(-2)(-3)(-4)}{3!} = \frac{-24}{6} = -4$

Step 4: See the pattern: $\binom{-2}{n} = (-1)^n(n+1)$

Step 5: Substitute $u = -x$.

$$\frac{1}{(1-x)^2} = 1 + (-2)(-x) + 3(-x)^2 + (-4)(-x)^3 + \cdots = 1 + 2x + 3x^2 + 4x^3 + \cdots$$

Answer: $\displaystyle\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty}(n+1)x^n$

Check: This matches the derivative of $\frac{1}{1-x} = 1 + x + x^2 + \cdots$ ✓


Handling $(a + x)^k$ When $a \neq 1$

The binomial series formula requires the form $(1 + \text{something})^k$.

Strategy: Factor out $a$ first.

$$(a + x)^k = a^k\left(1 + \frac{x}{a}\right)^k$$

Then apply the binomial series to $\left(1 + \frac{x}{a}\right)^k$ and multiply by $a^k$.

Convergence changes: The series converges when $\left|\frac{x}{a}\right| < 1$, i.e., $|x| < |a|$.


Common Mistakes and Misunderstandings

❌ Mistake: Forgetting the pattern in the generalized coefficient

Wrong: $\binom{1/2}{3} = \frac{(1/2)(1/2)(1/2)}{3!}$

Why it's wrong: Each factor in the numerator must decrease by 1, not stay the same.

Correct: $\binom{1/2}{3} = \frac{(1/2)(-1/2)(-3/2)}{3!}$


❌ Mistake: Not converting to $(1 + \text{something})$ form

Wrong: Trying to expand $(3+x)^{1/2}$ directly using $1 + kx + \frac{k(k-1)}{2!}x^2 + \cdots$

Why it's wrong: The binomial series formula only works for $(1+u)^k$, not $(a+u)^k$.

Correct: Factor first: $(3+x)^{1/2} = 3^{1/2}(1 + \frac{x}{3})^{1/2} = \sqrt{3}(1 + \frac{x}{3})^{1/2}$, then expand $(1 + \frac{x}{3})^{1/2}$.


❌ Mistake: Expecting an infinite series for integer exponents

Wrong: Writing $(1+x)^3 = 1 + 3x + \frac{3(2)}{2!}x^2 + \frac{3(2)(1)}{3!}x^3 + \frac{3(2)(1)(0)}{4!}x^4 + \cdots$

Why it's wrong: When $k$ is a non-negative integer, the series terminates! The $x^4$ term has a factor of $(3-3) = 0$ in the numerator.

Correct: $(1+x)^3 = 1 + 3x + 3x^2 + x^3$ — a finite polynomial with 4 terms.


❌ Mistake: Using the series outside its radius of convergence

Wrong: Using $(1+x)^{-1} = 1 - x + x^2 - x^3 + \cdots$ to compute $\frac{1}{1+2} = 1 - 2 + 4 - 8 + \cdots$

Why it's wrong: The series only converges for $|x| < 1$. Here $x = 2$, so the series diverges.

Correct: Only use the binomial series when $|x| < 1$. For $x = 2$, just compute $\frac{1}{3}$ directly.

Formulas & Reference

Binomial Series

$$(1 + x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n = 1 + kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \cdots$$

Expands (1+x)^k for any real exponent k. Converges for |x| < 1. When k is a positive integer, this becomes the finite Binomial Theorem.

Variables:
$k$:
any real number (the exponent)
$x$:
variable (must satisfy |x| < 1 for convergence)
$\binom{k}{n}$:
generalized binomial coefficient

Generalized Binomial Coefficient

$$\binom{k}{n} = \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}$$

The coefficient of x^n in the binomial series. Multiply n terms in the numerator, starting from k and decreasing by 1 each time.

Variables:
$k$:
the exponent (any real number)
$n$:
which term (non-negative integer)
$n!$:
n factorial in the denominator

Binomial Theorem (Integer Exponent)

$$(1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k$$

For positive integer n, this is a FINITE sum with n+1 terms. The binomial coefficient is n!/(k!(n-k)!).

Variables:
$n$:
positive integer exponent
$\binom{n}{k}$:
binomial coefficient = n!/(k!(n-k)!)
Courses Using This Skill

This skill is taught in the following courses. Create an account to access practice exercises and full course materials.