Binomial Series for MATH 141
Exam Relevance for MATH 141
Binomial series appear on MATH 141 finals as a Taylor series application. This late-course topic is weighted heavily.
The Binomial Series
The binomial series extends the familiar Binomial Theorem to any exponent—not just positive integers. This lets us expand expressions like $\sqrt{1+x}$, $\frac{1}{(1+x)^3}$, or $(1+x)^{2/3}$ as infinite power series.
The Binomial Theorem (Review)
For positive integer $n$:
$$(1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \cdots + x^n$$
This is a finite sum with $n+1$ terms.
Example: $(1+x)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4$
The Binomial Series (General Case)
For any real exponent $k$ (including fractions, negatives, etc.):
$$(1 + x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n = 1 + kx + \frac{k(k-1)}{2!}x^2 + \frac{k(k-1)(k-2)}{3!}x^3 + \cdots$$
Where the generalized binomial coefficient is:
$$\binom{k}{n} = \frac{k(k-1)(k-2)\cdots(k-n+1)}{n!}$$
Convergence: This series converges for $|x| < 1$.
Why Non-Integer Exponents Give Infinite Series
When $k$ is a positive integer, the coefficients eventually become zero:
- $\binom{4}{5} = \frac{4 \cdot 3 \cdot 2 \cdot 1 \cdot 0}{5!} = 0$
But when $k$ is NOT a positive integer, the numerator never hits zero:
- $\binom{1/2}{5} = \frac{(1/2)(-1/2)(-3/2)(-5/2)(-7/2)}{5!} \neq 0$
The terms keep going forever!
Common Binomial Series to Know
Square Root: $(1+x)^{1/2} = \sqrt{1+x}$
$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 - \frac{5}{128}x^4 + \cdots$$
Reciprocal Square Root: $(1+x)^{-1/2} = \frac{1}{\sqrt{1+x}}$
$$\frac{1}{\sqrt{1+x}} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 - \frac{5}{16}x^3 + \cdots$$
Reciprocal: $(1+x)^{-1} = \frac{1}{1+x}$
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \cdots$$
(This is just the geometric series!)
Cube Root: $(1+x)^{1/3} = \sqrt[3]{1+x}$
$$\sqrt[3]{1+x} = 1 + \frac{1}{3}x - \frac{1}{9}x^2 + \frac{5}{81}x^3 - \cdots$$
How to Compute Binomial Coefficients
For $\binom{k}{n}$, multiply $n$ terms in the numerator starting from $k$ and decreasing by 1:
$$\binom{k}{n} = \frac{k \cdot (k-1) \cdot (k-2) \cdots (k-n+1)}{n!}$$
Example: Find $\binom{1/2}{3}$
$$\binom{1/2}{3} = \frac{(1/2)(1/2-1)(1/2-2)}{3!} = \frac{(1/2)(-1/2)(-3/2)}{6} = \frac{3/8}{6} = \frac{1}{16}$$
Example: Find $\binom{-2}{3}$
$$\binom{-2}{3} = \frac{(-2)(-3)(-4)}{3!} = \frac{-24}{6} = -4$$
Problem: Expand $(1+x)^{1/2}$ through $x^3$.
Step 1: Identify $k = 1/2$.
Step 2: Compute each coefficient.
$\binom{1/2}{0} = 1$
$\binom{1/2}{1} = \frac{1/2}{1!} = \frac{1}{2}$
$\binom{1/2}{2} = \frac{(1/2)(-1/2)}{2!} = \frac{-1/4}{2} = -\frac{1}{8}$
$\binom{1/2}{3} = \frac{(1/2)(-1/2)(-3/2)}{3!} = \frac{3/8}{6} = \frac{1}{16}$
Step 3: Write the series.
$$\sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \cdots$$
Problem: Use the Binomial Theorem to expand $(2+x)^4$.
Step 1: Factor out the 2 to get the $(1 + \text{something})$ form.
$$(2+x)^4 = \left[2\left(1 + \frac{x}{2}\right)\right]^4 = 2^4\left(1 + \frac{x}{2}\right)^4 = 16\left(1 + \frac{x}{2}\right)^4$$
Step 2: Expand $(1 + \frac{x}{2})^4$ using the Binomial Theorem.
$$\left(1 + \frac{x}{2}\right)^4 = \binom{4}{0} + \binom{4}{1}\frac{x}{2} + \binom{4}{2}\left(\frac{x}{2}\right)^2 + \binom{4}{3}\left(\frac{x}{2}\right)^3 + \binom{4}{4}\left(\frac{x}{2}\right)^4$$
Step 3: Calculate the binomial coefficients.
$$\binom{4}{0} = 1, \quad \binom{4}{1} = 4, \quad \binom{4}{2} = 6, \quad \binom{4}{3} = 4, \quad \binom{4}{4} = 1$$
Step 4: Substitute and simplify.
$$= 1 + 4 \cdot \frac{x}{2} + 6 \cdot \frac{x^2}{4} + 4 \cdot \frac{x^3}{8} + 1 \cdot \frac{x^4}{16} = 1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16}$$
Step 5: Multiply by 16.
$$16\left(1 + 2x + \frac{3x^2}{2} + \frac{x^3}{2} + \frac{x^4}{16}\right) = 16 + 32x + 24x^2 + 8x^3 + x^4$$
Answer: $(2+x)^4 = 16 + 32x + 24x^2 + 8x^3 + x^4$
Problem: Expand $\frac{1}{(1-x)^2}$ as a power series.
Step 1: Rewrite as $(1 + u)^k$ form.
$$\frac{1}{(1-x)^2} = (1-x)^{-2} = (1 + (-x))^{-2}$$
So $k = -2$ and we substitute $u = -x$.
Step 2: Write the binomial series.
$$(1+u)^{-2} = \sum_{n=0}^{\infty} \binom{-2}{n} u^n$$
Step 3: Compute coefficients.
$\binom{-2}{0} = 1$
$\binom{-2}{1} = -2$
$\binom{-2}{2} = \frac{(-2)(-3)}{2!} = \frac{6}{2} = 3$
$\binom{-2}{3} = \frac{(-2)(-3)(-4)}{3!} = \frac{-24}{6} = -4$
Step 4: See the pattern: $\binom{-2}{n} = (-1)^n(n+1)$
Step 5: Substitute $u = -x$.
$$\frac{1}{(1-x)^2} = 1 + (-2)(-x) + 3(-x)^2 + (-4)(-x)^3 + \cdots = 1 + 2x + 3x^2 + 4x^3 + \cdots$$
Answer: $\displaystyle\frac{1}{(1-x)^2} = \sum_{n=0}^{\infty}(n+1)x^n$
Check: This matches the derivative of $\frac{1}{1-x} = 1 + x + x^2 + \cdots$ ✓
Handling $(a + x)^k$ When $a \neq 1$
The binomial series formula requires the form $(1 + \text{something})^k$.
Strategy: Factor out $a$ first.
$$(a + x)^k = a^k\left(1 + \frac{x}{a}\right)^k$$
Then apply the binomial series to $\left(1 + \frac{x}{a}\right)^k$ and multiply by $a^k$.
Convergence changes: The series converges when $\left|\frac{x}{a}\right| < 1$, i.e., $|x| < |a|$.
Common Mistakes and Misunderstandings
❌ Mistake: Forgetting the pattern in the generalized coefficient
Wrong: $\binom{1/2}{3} = \frac{(1/2)(1/2)(1/2)}{3!}$
Why it's wrong: Each factor in the numerator must decrease by 1, not stay the same.
Correct: $\binom{1/2}{3} = \frac{(1/2)(-1/2)(-3/2)}{3!}$
❌ Mistake: Not converting to $(1 + \text{something})$ form
Wrong: Trying to expand $(3+x)^{1/2}$ directly using $1 + kx + \frac{k(k-1)}{2!}x^2 + \cdots$
Why it's wrong: The binomial series formula only works for $(1+u)^k$, not $(a+u)^k$.
Correct: Factor first: $(3+x)^{1/2} = 3^{1/2}(1 + \frac{x}{3})^{1/2} = \sqrt{3}(1 + \frac{x}{3})^{1/2}$, then expand $(1 + \frac{x}{3})^{1/2}$.
❌ Mistake: Expecting an infinite series for integer exponents
Wrong: Writing $(1+x)^3 = 1 + 3x + \frac{3(2)}{2!}x^2 + \frac{3(2)(1)}{3!}x^3 + \frac{3(2)(1)(0)}{4!}x^4 + \cdots$
Why it's wrong: When $k$ is a non-negative integer, the series terminates! The $x^4$ term has a factor of $(3-3) = 0$ in the numerator.
Correct: $(1+x)^3 = 1 + 3x + 3x^2 + x^3$ — a finite polynomial with 4 terms.
❌ Mistake: Using the series outside its radius of convergence
Wrong: Using $(1+x)^{-1} = 1 - x + x^2 - x^3 + \cdots$ to compute $\frac{1}{1+2} = 1 - 2 + 4 - 8 + \cdots$
Why it's wrong: The series only converges for $|x| < 1$. Here $x = 2$, so the series diverges.
Correct: Only use the binomial series when $|x| < 1$. For $x = 2$, just compute $\frac{1}{3}$ directly.
Binomial Series
Expands (1+x)^k for any real exponent k. Converges for |x| < 1. When k is a positive integer, this becomes the finite Binomial Theorem.
Variables:
- $k$:
- any real number (the exponent)
- $x$:
- variable (must satisfy |x| < 1 for convergence)
- $\binom{k}{n}$:
- generalized binomial coefficient
Generalized Binomial Coefficient
The coefficient of x^n in the binomial series. Multiply n terms in the numerator, starting from k and decreasing by 1 each time.
Variables:
- $k$:
- the exponent (any real number)
- $n$:
- which term (non-negative integer)
- $n!$:
- n factorial in the denominator
Binomial Theorem (Integer Exponent)
For positive integer n, this is a FINITE sum with n+1 terms. The binomial coefficient is n!/(k!(n-k)!).
Variables:
- $n$:
- positive integer exponent
- $\binom{n}{k}$:
- binomial coefficient = n!/(k!(n-k)!)
This skill is taught in the following courses. Create an account to access practice exercises and full course materials.