Derivatives of Inverse Trig Functions for MATH 139

Exam Relevance for MATH 139

Likelihood of appearing: High

Know derivatives of arcsin, arctan, and arcsec at minimum. Often appears in implicit differentiation.

Lesson

Derivatives of Inverse Trigonometric Functions

The inverse trig functions "undo" the regular trig functions. Their derivatives are algebraic expressions—no trig functions appear in the answers!


The Three Most Important

These appear constantly on exams:

$$\frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}[\arccos x] = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}[\arctan x] = \frac{1}{1+x^2}$$

🔑 Key observations:

  • Arcsine and arccosine have the same denominator $\sqrt{1-x^2}$, but arccosine is negative
  • Arctangent has the simplest formula: $\frac{1}{1+x^2}$
  • These derivatives are defined where the original functions are defined

The Other Three (Less Common)

$$\frac{d}{dx}[\text{arccot } x] = -\frac{1}{1+x^2}$$

$$\frac{d}{dx}[\text{arcsec } x] = \frac{1}{|x|\sqrt{x^2-1}}$$

$$\frac{d}{dx}[\text{arccsc } x] = -\frac{1}{|x|\sqrt{x^2-1}}$$

Pattern: Just like regular trig, the "co-" functions have negative derivatives.


Complete Reference Table

Function Derivative Domain of derivative
$\arcsin x$ $\dfrac{1}{\sqrt{1-x^2}}$ $-1 < x < 1$
$\arccos x$ $-\dfrac{1}{\sqrt{1-x^2}}$ $-1 < x < 1$
$\arctan x$ $\dfrac{1}{1+x^2}$ all real $x$
$\text{arccot } x$ $-\dfrac{1}{1+x^2}$ all real $x$
$\text{arcsec } x$ $\dfrac{1}{\|x\|\sqrt{x^2-1}}$ $\|x\| > 1$
$\text{arccsc } x$ $-\dfrac{1}{\|x\|\sqrt{x^2-1}}$ $\|x\| > 1$

Alternative Notation

You may see inverse trig functions written as:

  • $\arcsin x = \sin^{-1} x$
  • $\arccos x = \cos^{-1} x$
  • $\arctan x = \tan^{-1} x$

These mean the same thing! (Note: $\sin^{-1} x \neq \frac{1}{\sin x}$)


Example 1: Basic Derivative

Problem: Find $\frac{d}{dx}[\arctan x]$

This is a direct formula: $$\frac{d}{dx}[\arctan x] = \boxed{\frac{1}{1+x^2}}$$


Example 2: With Chain Rule

Problem: Find $\frac{d}{dx}[\arcsin(2x)]$

Step 1: Use the chain rule. If $u = 2x$: $$\frac{d}{dx}[\arcsin(2x)] = \frac{1}{\sqrt{1-(2x)^2}} \cdot \frac{d}{dx}[2x]$$

Step 2: Simplify: $$= \frac{1}{\sqrt{1-4x^2}} \cdot 2 = \boxed{\frac{2}{\sqrt{1-4x^2}}}$$


Example 3: Arctangent with Chain Rule

Problem: Find $\frac{d}{dx}[\arctan(3x)]$

Step 1: Apply the chain rule: $$\frac{d}{dx}[\arctan(3x)] = \frac{1}{1+(3x)^2} \cdot \frac{d}{dx}[3x]$$

Step 2: Simplify: $$= \frac{1}{1+9x^2} \cdot 3 = \boxed{\frac{3}{1+9x^2}}$$


Example 4: Product Rule Combination

Problem: Find $\frac{d}{dx}[x \cdot \arcsin x]$

Step 1: Apply the product rule: $(fg)' = f'g + fg'$

Let $f(x) = x$ and $g(x) = \arcsin x$.

Step 2: Calculate: $$\frac{d}{dx}[x \cdot \arcsin x] = 1 \cdot \arcsin x + x \cdot \frac{1}{\sqrt{1-x^2}}$$

$$= \boxed{\arcsin x + \frac{x}{\sqrt{1-x^2}}}$$


Example 5: Finding a Derivative at a Point

Problem: Find $f'(0)$ if $f(x) = \arctan(x^2 + 1)$

Step 1: Find the general derivative using chain rule: $$f'(x) = \frac{1}{1+(x^2+1)^2} \cdot 2x = \frac{2x}{1+(x^2+1)^2}$$

Step 2: Evaluate at $x = 0$: $$f'(0) = \frac{2(0)}{1+(0+1)^2} = \frac{0}{1+1} = \boxed{0}$$


Example 6: Why the Formulas Work (Proof for Arcsin)

Problem: Prove that $\frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1-x^2}}$

Step 1: Let $y = \arcsin x$, which means $\sin y = x$.

Step 2: Differentiate implicitly: $$\cos y \cdot \frac{dy}{dx} = 1$$ $$\frac{dy}{dx} = \frac{1}{\cos y}$$

Step 3: Express $\cos y$ in terms of $x$.

Since $\sin y = x$ and $\cos^2 y + \sin^2 y = 1$: $$\cos y = \sqrt{1 - \sin^2 y} = \sqrt{1 - x^2}$$

(We take the positive root because $y = \arcsin x$ is in $[-\frac{\pi}{2}, \frac{\pi}{2}]$, where cosine is positive.)

Step 4: Substitute: $$\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$$

$$\boxed{\frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1-x^2}}}$$


Common Mistakes and Misunderstandings

❌ Mistake: Confusing $\sin^{-1} x$ with $\frac{1}{\sin x}$

Wrong: $\frac{d}{dx}[\sin^{-1} x] = \frac{d}{dx}\left[\frac{1}{\sin x}\right] = -\frac{\cos x}{\sin^2 x}$

Why it's wrong: $\sin^{-1} x$ means the inverse sine function (arcsin), NOT one over sine.

Correct: $\frac{d}{dx}[\sin^{-1} x] = \frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1-x^2}}$


❌ Mistake: Forgetting the chain rule

Wrong: $\frac{d}{dx}[\arctan(5x)] = \frac{1}{1+(5x)^2}$

Why it's wrong: You must multiply by the derivative of the inside function.

Correct: $\frac{d}{dx}[\arctan(5x)] = \frac{1}{1+25x^2} \cdot 5 = \frac{5}{1+25x^2}$


❌ Mistake: Forgetting that arccosine's derivative is negative

Wrong: $\frac{d}{dx}[\arccos x] = \frac{1}{\sqrt{1-x^2}}$

Why it's wrong: Arccosine has a negative derivative (like all "co-" inverse trig functions).

Correct: $\frac{d}{dx}[\arccos x] = -\frac{1}{\sqrt{1-x^2}}$


Memory Tips

  1. Arcsin and arctan are the "friendly" ones — their derivatives are positive
  2. All "co-" functions are negative — arccos, arccot, arccsc
  3. Arctan is the simplest — no square root, just $\frac{1}{1+x^2}$
  4. Arcsin/arccos share a denominator — $\sqrt{1-x^2}$, just differ by sign
Formulas & Reference

Derivative of Arcsine

$$\frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1-x^2}}$$

The derivative of arcsine (inverse sine). Domain: -1 < x < 1. One of the three most common inverse trig derivatives.

Variables:
$x$:
value between -1 and 1

Derivative of Arccosine

$$\frac{d}{dx}[\arccos x] = -\frac{1}{\sqrt{1-x^2}}$$

The derivative of arccosine (inverse cosine). Same as arcsin but NEGATIVE. Domain: -1 < x < 1.

Variables:
$x$:
value between -1 and 1

Derivative of Arctangent

$$\frac{d}{dx}[\arctan x] = \frac{1}{1+x^2}$$

The derivative of arctangent (inverse tangent). The simplest inverse trig derivative—no square root, defined for all real x.

Variables:
$x$:
any real number

Derivative of Arccotangent

$$\frac{d}{dx}[\text{arccot } x] = -\frac{1}{1+x^2}$$

The derivative of arccotangent. Same as arctan but NEGATIVE (all 'co-' functions have negative derivatives).

Variables:
$x$:
any real number

Derivative of Arcsecant

$$\frac{d}{dx}[\text{arcsec } x] = \frac{1}{|x|\sqrt{x^2-1}}$$

The derivative of arcsecant. Note the absolute value on x. Domain: |x| > 1.

Variables:
$x$:
value where |x| > 1

Derivative of Arccosecant

$$\frac{d}{dx}[\text{arccsc } x] = -\frac{1}{|x|\sqrt{x^2-1}}$$

The derivative of arccosecant. Same as arcsec but NEGATIVE. Domain: |x| > 1.

Variables:
$x$:
value where |x| > 1
Courses Using This Skill

This skill is taught in the following courses. Create an account to access practice exercises and full course materials.