Practice Final #3

Full Course
McGill University, MATH 139

Exam Settings

Show Tags
Show Difficulty
Back to Course

Short Answer Questions

Short Answer
A1
Difficulty: 2/10
Let f(x)=x3e2x+3(x2)2exf(x) = x^3e^{2x} + 3(x - 2)^2e^{-x}. Find f(0)f'(0).

Exercise Tags

taking derivatives
Exponentials

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Break down the function


We have a function with two terms:
1. x3e2xx^3e^{2x}
2. 3(x2)2ex3(x - 2)^2e^{-x}

We'll need to find the derivative of each term using the product rule, then evaluate at x=0x = 0.

Step 2: Apply the product rule to the first term


For the first term, x3e2xx^3e^{2x}, we use the product rule:

ddx[x3e2x]=ddx[x3]e2x+x3ddx[e2x]=3x2e2x+x32e2x=3x2e2x+2x3e2x=e2x(3x2+2x3) \begin{align*}
& \frac{d}{dx}[x^3e^{2x}] \\
&= \frac{d}{dx}[x^3] \cdot e^{2x} + x^3 \cdot \frac{d}{dx}[e^{2x}] \\
&= 3x^2 \cdot e^{2x} + x^3 \cdot 2e^{2x} \\
&= 3x^2e^{2x} + 2x^3e^{2x} \\
&= e^{2x}(3x^2 + 2x^3)
\end{align*}


Step 3: Apply the product rule to the second term


For the second term, 3(x2)2ex3(x - 2)^2e^{-x}, we use the product rule again:


ddx[3(x2)2ex]=ddx[3(x2)2]ex+3(x2)2ddx[ex]=32(x2)ex+3(x2)2(1)ex=6(x2)ex3(x2)2ex=ex[6(x2)3(x2)2] \begin{align*}
& \frac{d}{dx}[3(x - 2)^2e^{-x}] \\
&= \frac{d}{dx}[3(x - 2)^2] \cdot e^{-x} + 3(x - 2)^2 \cdot \frac{d}{dx}[e^{-x}] \\
&= 3 \cdot 2(x - 2) \cdot e^{-x} + 3(x - 2)^2 \cdot (-1)e^{-x} \\
&= 6(x - 2)e^{-x} - 3(x - 2)^2e^{-x} \\
&= e^{-x}[6(x - 2) - 3(x - 2)^2]
\end{align*}



When differentiating terms with eaxe^{ax}, remember that ddx[eax]=aeax\frac{d}{dx}[e^{ax}] = a \cdot e^{ax}. The coefficient comes out front!

Step 4: Combine the derivatives and evaluate at x = 0


The complete derivative is:


f(x)=e2x(3x2+2x3)+ex[6(x2)3(x2)2] \begin{align*}
& f'(x) \\
&= e^{2x}(3x^2 + 2x^3) \\
&+ e^{-x}[6(x - 2) - 3(x - 2)^2]
\end{align*}


Now we evaluate at x=0x = 0:

f(0)=e2(0)(3(0)2+2(0)3)+e(0)[6(02)3(02)2]=e0(0)+e0[6(2)3(2)2]=10+1[(12)34]=0+[1212]=24 \begin{align*}
& f'(0) \\
&= e^{2(0)}(3(0)^2 + 2(0)^3) \\
&+ e^{-(0)}[6(0 - 2) - 3(0 - 2)^2] \\
&= e^0(0) \\
&+ e^0[6(-2) - 3(-2)^2] \\
&= 1 \cdot 0 \\
&+ 1 \cdot [(-12) - 3 \cdot 4] \\
&= 0 \\
&+ [-12 - 12] \\
&= -24
\end{align*}

Therefore:

f(0)=24 \boxed{f'(0) = -24}
f(0)=24 \boxed{f'(0) = -24}
A2
Difficulty: 3/10
Let the function be defined by
f(x)={sinh(x)if x<0,b3cos(x)if x0. f(x) =
\begin{cases}
\sinh(x) & \text{if } x < 0, \\
b - 3\cos(x) & \text{if } x \geq 0.
\end{cases}

Find the value of bb that makes f(x)f(x) continuous everywhere.

Exercise Tags

hyperbolic trig functions
Piecewise functions
continuity

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Understand what continuity means


For a piecewise function to be continuous at the transition point (in this case x=0x = 0), the limits from both sides must be equal:

limx0f(x)=limx0+f(x) \begin{align*}
& \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x)
\end{align*}


Step 2: Calculate the left-hand limit


The left-hand limit uses the first piece of the function:

limx0f(x)=limx0sinh(x)=sinh(0)=0 \begin{align*}
& \lim_{x \to 0^-} f(x) \\
&= \lim_{x \to 0^-} \sinh(x) \\
&= \sinh(0) \\
&= 0
\end{align*}


Step 3: Calculate the right-hand limit


The right-hand limit uses the second piece:

limx0+f(x)=limx0+(b3cos(x))=b3cos(0)=b3(1)=b3 \begin{align*}
& \lim_{x \to 0^+} f(x) \\
&= \lim_{x \to 0^+} (b - 3\cos(x)) \\
&= b - 3\cos(0) \\
&= b - 3(1) \\
&= b - 3
\end{align*}


Step 4: Set the limits equal


For continuity, these limits must be equal:

limx0f(x)=limx0+f(x) \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x)
sinh(0)=b3cos(0) \sinh(0) = b - 3\cos(0)
0=b3(1) 0 = b - 3(1)
0=b3 0 = b - 3
b=3 b = 3

When working with piecewise functions, always check the value of each piece at the transition point to ensure continuity.

Therefore, the value of bb that makes f(x)f(x) continuous everywhere is:

b=3 \boxed{b = 3}
b=3 \boxed{b = 3}
A3
Difficulty: 3/10
Find dydx\frac{dy}{dx} if tanh(x)=xy\tanh(x) = xy at the point (1,tanh(1))(1, \tanh(1)).

Exercise Tags

differentiation: implicit
hyperbolic trig functions
Differentiation: general

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Use implicit differentiation


We need to differentiate both sides of the equation with respect to xx:
tanh(x)=xy \begin{align*}
\tanh(x) &= xy
\end{align*}


Differentiating the left side:
ddx[tanh(x)]=sech2(x) \begin{align*}
\frac{d}{dx}[\tanh(x)] &= \text{sech}^2(x)
\end{align*}


Differentiating the right side:
ddx[xy]=y+xdydx \begin{align*}
\frac{d}{dx}[xy] &= y + x\frac{dy}{dx}
\end{align*}


Step 2: Set the derivatives equal and solve for dydx\frac{dy}{dx}


sech2(x)=y+xdydxsech2(x)y=xdydxdydx=sech2(x)yx \begin{align*}
\text{sech}^2(x) &= y + x\frac{dy}{dx} \\
\text{sech}^2(x) - y &= x\frac{dy}{dx} \\
\frac{dy}{dx} &= \frac{\text{sech}^2(x) - y}{x}
\end{align*}


Step 3: Evaluate at the given point


At the point (1,tanh(1))(1, \tanh(1)), we have x=1x = 1 and y=tanh(1)y = \tanh(1).

Let's substitute these values:
dydx(1,tanh(1))=sech2(1)tanh(1)1=sech2(1)tanh(1) \begin{align*}
\frac{dy}{dx}\bigg|_{(1,\tanh(1))} &= \frac{\text{sech}^2(1) - \tanh(1)}{1} \\
&= \text{sech}^2(1) - \tanh(1)
\end{align*}


Now we need to calculate these values:
sech2(1)=1cosh2(1)=1(e+e12)2=4(e+e1)2 \begin{align*}
\text{sech}^2(1) &= \frac{1}{\cosh^2(1)} \\
&= \frac{1}{(\frac{e + e^{-1}}{2})^2} \\
&= \frac{4}{(e + e^{-1})^2}
\end{align*}


And:
tanh(1)=sinh(1)cosh(1)=ee12e+e12=ee1e+e1 \begin{align*}
\tanh(1) &= \frac{\sinh(1)}{\cosh(1)} \\
&= \frac{\frac{e - e^{-1}}{2}}{\frac{e + e^{-1}}{2}} \\
&= \frac{e - e^{-1}}{e + e^{-1}}
\end{align*}


Therefore:

dydx=4(e+e1)2ee1e+e1=4(e+e1)2(ee1)(e+e1)(e+e1)2=4(e2e2)(e+e1)2=4(e2e2)(e+e1)2 \begin{align*}
\frac{dy}{dx} &= \frac{4}{(e + e^{-1})^2} - \frac{e - e^{-1}}{e + e^{-1}} \\
&= \frac{4}{(e + e^{-1})^2} - \frac{(e - e^{-1})(e + e^{-1})}{(e + e^{-1})^2} \\
&= \frac{4 - (e^2 - e^{-2})}{(e + e^{-1})^2} \\
&= \frac{4 - (e^2 - e^{-2})}{(e + e^{-1})^2}
\end{align*}



We can simplify further:
dydx=4e2+e2(e+e1)2 \begin{align*}
\frac{dy}{dx} &= \frac{4 - e^2 + e^{-2}}{(e + e^{-1})^2}
\end{align*}


Therefore:
dydx=4e2+e2(e+e1)2\boxed{\frac{dy}{dx} = \frac{4 - e^2 + e^{-2}}{(e + e^{-1})^2}}

When differentiating hyperbolic functions, remember that ddx[tanh(x)]=sech2(x)=1cosh2(x)\frac{d}{dx}[\tanh(x)] = \text{sech}^2(x) = \frac{1}{\cosh^2(x)}, similar to how the derivative of tan(x)\tan(x) is sec2(x)\sec^2(x) for trigonometric functions.
dydx=4e2+e2(e+e1)2\boxed{\frac{dy}{dx} = \frac{4 - e^2 + e^{-2}}{(e + e^{-1})^2}}
A4
Difficulty: 2/10
Let f(x)=3x235x34f(x) = 3x^{\frac{2}{3}} - 5x^{-\frac{3}{4}}. Find f(1)f'(1).

Exercise Tags

taking derivatives

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Let f(x)=3x235x34f(x) = 3x^{\frac{2}{3}} - 5x^{-\frac{3}{4}}. Find f(1)f'(1).

Step 1: Find the derivative of f(x)f(x)


We need to use the power rule for differentiation: ddx(xn)=nxn1\frac{d}{dx}(x^n) = nx^{n-1}

For the first term: 3x233x^{\frac{2}{3}}
ddx(3x23)=323x231=2x13=2x13 \begin{align*}
\frac{d}{dx}(3x^{\frac{2}{3}}) &= 3 \cdot \frac{2}{3} \cdot x^{\frac{2}{3}-1} \\
&= 2 \cdot x^{-\frac{1}{3}} \\
&= \frac{2}{x^{\frac{1}{3}}}
\end{align*}


For the second term: 5x34-5x^{-\frac{3}{4}}
ddx(5x34)=5(34)x341=5(34)x74=154x74=154x74 \begin{align*}
\frac{d}{dx}(-5x^{-\frac{3}{4}}) &= -5 \cdot (-\frac{3}{4}) \cdot x^{-\frac{3}{4}-1} \\
&= -5 \cdot (-\frac{3}{4}) \cdot x^{-\frac{7}{4}} \\
&= \frac{15}{4} \cdot x^{-\frac{7}{4}} \\
&= \frac{15}{4 \cdot x^{\frac{7}{4}}}
\end{align*}


Now we combine these results to find f(x)f'(x):
f(x)=2x13+154x74 \begin{align*}
f'(x) &= \frac{2}{x^{\frac{1}{3}}} + \frac{15}{4 \cdot x^{\frac{7}{4}}}
\end{align*}


Step 2: Evaluate f(1)f'(1)


When we substitute x=1x = 1:
f(1)=2113+154174=21+1541=2+154=2+154=84+154=234 \begin{align*}
f'(1) &= \frac{2}{1^{\frac{1}{3}}} + \frac{15}{4 \cdot 1^{\frac{7}{4}}} \\
&= \frac{2}{1} + \frac{15}{4 \cdot 1} \\
&= 2 + \frac{15}{4} \\
&= 2 + \frac{15}{4} \\
&= \frac{8}{4} + \frac{15}{4} \\
&= \frac{23}{4}
\end{align*}


Therefore:
f(1)=234\boxed{f'(1) = \frac{23}{4}}
f(1)=234\boxed{f'(1) = \frac{23}{4}}
A5
Difficulty: 5/10
Find limx3ex+5sin(x)ex+cos(x) \lim_{x \to \infty} \frac{3e^x + 5\sin(x)}{e^x + \cos(x)}

Exercise Tags

limits: general
Exponentials
Intuitive Reasoning

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Divide both numerator and denominator by exe^x



limx3ex+5sin(x)ex+cos(x)=limx3ex+5sin(x)ex+cos(x)1/ex1/ex=limx3+5sin(x)/ex1+cos(x)/ex \begin{align*}
& \lim_{x \to \infty} \frac{3e^x + 5\sin(x)}{e^x + \cos(x)} \\
&= \lim_{x \to \infty} \frac{3e^x + 5\sin(x)}{e^x + \cos(x)} \cdot \frac{1/e^x}{1/e^x} \\
&= \lim_{x \to \infty} \frac{3 + 5\sin(x)/e^x}{1 + \cos(x)/e^x}
\end{align*}



Step 2: Evaluate limits of individual terms as xx \to \infty


As xx \to \infty:
- sin(x)/ex0\sin(x)/e^x \to 0 since exe^x grows much faster than sin(x)\sin(x)
- cos(x)/ex0\cos(x)/e^x \to 0 for the same reason

When dealing with limits involving exponentials and trigonometric functions, remember that exponential functions like exe^x grow much faster than any polynomial or trigonometric function. Since sine and cosine are always bounded between -1 and 1, the ratio sin(x)/ex\sin(x)/e^x or cos(x)/ex\cos(x)/e^x will always approach 0 as xx approaches infinity.

Step 3: Substitute these limits



limx3+5sin(x)/ex1+cos(x)/ex=limx(3+5sin(x)/ex)limx(1+cos(x)/ex)=3+01+0=3 \begin{align*}
&\lim_{x \to \infty} \frac{3 + 5\sin(x)/e^x}{1 + \cos(x)/e^x}\\
&= \frac{\lim_{x \to \infty}(3 + 5\sin(x)/e^x)}{\lim_{x \to \infty}(1 + \cos(x)/e^x)} \\
&= \frac{3 + 0}{1 + 0} \\
&= 3
\end{align*}



Therefore:
limx3ex+5sin(x)ex+cos(x)=3\boxed{\lim_{x \to \infty} \frac{3e^x + 5\sin(x)}{e^x + \cos(x)} = 3}
limx3ex+5sin(x)ex+cos(x)=3\boxed{\lim_{x \to \infty} \frac{3e^x + 5\sin(x)}{e^x + \cos(x)} = 3}

Mcq Questions

MCQ
B1
Difficulty: 1/10
Find the most general antiderivative of 11+x2+sin(x).
\quad \frac{1}{1 + x^2} + \sin(x).


(A) arctan(x)cos(x)+C \arctan(x) - \cos(x) + C

(B) ln(1+x2)cos(x)+C \ln(1 + x^2) - \cos(x) + C

(C) x1x+cos(x)+C x - \frac{1}{x} + \cos(x) + C

(D) 2x(1+x2)2cos(x)+C \frac{-2x}{(1 + x^2)^2} - \cos(x) + C

(E) None of the above \text{None of the above}

Exercise Tags

integrals
integrals: inverse trig
inverse trig functions

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
Step 1: Integrate the first term 11+x2 \frac{1}{1 + x^2}


We recognize that the integral of 11+x2 \frac{1}{1 + x^2} is the well-known inverse tangent function:

11+x2dx=arctan(x)+C1
\int \frac{1}{1 + x^2} \, dx = \arctan(x) + C_1


Step 2: Integrate the second term sin(x) \sin(x)


The integral of sin(x) \sin(x) is:

sin(x)dx=cos(x)+C2
\int \sin(x) \, dx = -\cos(x) + C_2


Step 3: Combine the results


Now we combine the two integrals:

(11+x2+sin(x))dx=arctan(x)cos(x)+C
\int \left( \frac{1}{1 + x^2} + \sin(x) \right) \, dx = \arctan(x) - \cos(x) + C


where C=C1+C2 C = C_1 + C_2 is the most general constant of integration.

Step 4: Final Answer


Thus, the most general antiderivative is:

arctan(x)cos(x)+C
\boxed{\arctan(x) - \cos(x) + C}


The correct answer is:

(A)arctan(x)cos(x)+C
\boxed{(A) \, \arctan(x) - \cos(x) + C}
PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
(A)arctan(x)cos(x)+C
\boxed{(A) \, \arctan(x) - \cos(x) + C}
B2
Difficulty: 1/10
limx4+x2x=
\lim_{x \to \infty} \sqrt{4 + x^2} - x =


(A) 14 \frac{1}{4}

(B) 4 4

(C) DNE \text{DNE}

(D) 0 0

(E) None of the above \text{None of the above}

Exercise Tags

conjugate
limits: general

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
Step 1: Rationalize the expression


We can multiply and divide the expression by its conjugate:

limx(4+x2x)4+x2+x4+x2+x
\lim_{x \to \infty} \left( \sqrt{4 + x^2} - x \right) \cdot \frac{\sqrt{4 + x^2} + x}{\sqrt{4 + x^2} + x}


This simplifies to:

limx(4+x2)x24+x2+x
\lim_{x \to \infty} \frac{(4 + x^2) - x^2}{\sqrt{4 + x^2} + x}


Step 2: Simplify the numerator


(4+x2)x2=4
(4 + x^2) - x^2 = 4


So the expression becomes:

limx44+x2+x
\lim_{x \to \infty} \frac{4}{\sqrt{4 + x^2} + x}


Step 3: Evaluate the limit


As xx \to \infty, the term 4+x2 \sqrt{4 + x^2} behaves similarly to xx because x2x^2 dominates inside the square root. Thus:

4+x2x
\sqrt{4 + x^2} \approx x


So the denominator becomes approximately:

4+x2+xx+x=2x
\sqrt{4 + x^2} + x \approx x + x = 2x


Now, the expression becomes:

limx42x=limx2x=0
\lim_{x \to \infty} \frac{4}{2x} = \lim_{x \to \infty} \frac{2}{x} = 0


Step 4: Final Answer


0
\boxed{0}


Thus, the correct answer is:

(D)0
\boxed{(D) \, 0}
PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
(D)0
\boxed{(D) \, 0}
B3
Difficulty: 1/10
limx0+sin(x)(ex1)x3=
\lim_{x \to 0^+} \frac{\sin(x)(e^x - 1)}{x^3} =

(A) 12 -\frac{1}{2}

(B) 1 1

(C) \infty

(D) 0 0

(E) None of the above \text{None of the above}

Exercise Tags

limits: general
limits: using identities

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
Step 1: Split the limit into three parts


We are trying to evaluate:

limx0+sin(x)(ex1)x3
\lim_{x \to 0^+} \frac{\sin(x)(e^x - 1)}{x^3}


We can rewrite this as:

limx0+(sin(x)xex1x1x)
\lim_{x \to 0^+} \left( \frac{\sin(x)}{x} \cdot \frac{e^x - 1}{x} \cdot \frac{1}{x} \right)


By splitting it like this, we can analyze each part separately, making it easier to solve.

Step 2: Evaluate each limit individually


1. **Evaluate** limx0+sin(x)x \lim_{x \to 0^+} \frac{\sin(x)}{x} :

limx0+sin(x)x=1
\lim_{x \to 0^+} \frac{\sin(x)}{x} = 1


This is a standard limit that often appears in exams.

[Remember this limit: limx0sin(x)x=1
\lim_{x \to 0} \frac{\sin(x)}{x} = 1

They love to test this! It shows that sin(x)\sin(x) and xx are almost identical for small values of xx.]


2. **Evaluate** limx0+ex1x \lim_{x \to 0^+} \frac{e^x - 1}{x} :

limx0+ex1x=1
\lim_{x \to 0^+} \frac{e^x - 1}{x} = 1


For small xx, the function ex1e^x - 1 behaves similarly to xx.

[This limit is another must-know: limx0ex1x=1
\lim_{x \to 0} \frac{e^x - 1}{x} = 1

This shows that for small xx, the numerator and denominator act like the same function.]


3. **Evaluate** limx0+1x \lim_{x \to 0^+} \frac{1}{x} :

limx0+1x=
\lim_{x \to 0^+} \frac{1}{x} = \infty


This tells us that the function grows without bound as xx approaches 0 from the positive side.

Step 3: Combine the results


Using the property that:

limx0+(f(x)g(x)h(x))=limx0+f(x)limx0+g(x)limx0+h(x)
\lim_{x \to 0^+} \left( f(x) \cdot g(x) \cdot h(x) \right) = \lim_{x \to 0^+} f(x) \cdot \lim_{x \to 0^+} g(x) \cdot \lim_{x \to 0^+} h(x)


**(only if all limits are finite or one limit goes to infinity without any undefined behavior like 00 \cdot \infty)**, we get:

11=
1 \cdot 1 \cdot \infty = \infty


Since the multiplication involves finite values and one \infty, the result is:


\boxed{\infty}


This approach works here because each limit we evaluated behaves predictably and does not lead to an undefined form like 00 \cdot \infty. Therefore, we can confidently multiply the individual limits.

Summary

In this tough question they are testing your knowledge of the these two limits:
limx0sin(x)x=1
\lim_{x \to 0} \frac{\sin(x)}{x} = 1
and

limx0ex1x=1
\lim_{x \to 0} \frac{e^x - 1}{x} = 1
. As long as you know those limits then you'll have no problem with this question.


The reciprocal of each limit is also 1:

limx0xsin(x)=1andlimx0xex1=1
\lim_{x \to 0} \frac{x}{\sin(x)} = 1 \quad \text{and} \quad \lim_{x \to 0} \frac{x}{e^x - 1} = 1


These limits show that sin(x) \sin(x) and ex1 e^x - 1 behave almost exactly like x x when x x is close to 0. Knowing these will help you solve many tricky limits that appear in calculus exams!



You can also therefore mix these terms:

limx0sin(x)ex1=1
\lim_{x \to 0} \frac{\sin(x)}{e^x - 1} = 1


Both sin(x) \sin(x) and ex1 e^x - 1 behave like xx when xx is close to 0, so this limit simplifies to:

limx0xx=1
\lim_{x \to 0} \frac{x}{x} = 1


This is another handy limit to keep in mind for calculus exams!
PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
(C)
\boxed{(C) \quad \infty}

Long Answer Questions

Long Answer
C1
Difficulty: 8/10
Let f(x)=x43(9x)f(x) = |x|^{\frac{4}{3}}(9 - x). Find the set on which the function is increasing.

Exercise Tags

Absolute Value
critical points
Intervals of Increase and Decrease

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Let me revise the solution to explicitly find the critical points and exclude them from the interval:

Let f(x)=x43(9x)f(x) = |x|^{\frac{4}{3}}(9 - x). Find the set on which the function is increasing.

Step 1: Find the derivative for x > 0


When x>0x > 0, x=x|x| = x, so:
f(x)=x43(9x)f(x)=43x13(9x)x43f(x)=x13[43(9x)x]f(x)=x13[1273x] \begin{align*}
& f(x) = x^{\frac{4}{3}}(9 - x) \\
& f'(x) = \frac{4}{3}x^{\frac{1}{3}}(9 - x) - x^{\frac{4}{3}} \\
& f'(x) = x^{\frac{1}{3}}[\frac{4}{3}(9 - x) - x] \\
& f'(x) = x^{\frac{1}{3}}[12 - \frac{7}{3}x]
\end{align*}


Step 2: Find the derivative for x < 0


When x<0x < 0, x=x|x| = -x, so:
f(x)=(x)43(9x)f(x)=(x)13[12+13x] \begin{align*}
& f(x) = (-x)^{\frac{4}{3}}(9 - x) \\
& f'(x) = (-x)^{\frac{1}{3}}[-12 + \frac{1}{3}x]
\end{align*}


Step 3: Find the critical points


Critical points occur when f(x)=0f'(x) = 0 or when f(x)f'(x) is undefined.

For x>0x > 0:
f(x)=x13[1273x]=0 \begin{align*}
& f'(x) = x^{\frac{1}{3}}[12 - \frac{7}{3}x] = 0
\end{align*}


This occurs when:
- x13=0x^{\frac{1}{3}} = 0, which is impossible for x>0x > 0
- 1273x=012 - \frac{7}{3}x = 0, which gives x=367x = \frac{36}{7}

For x<0x < 0:
f(x)=(x)13[12+13x]=0 \begin{align*}
& f'(x) = (-x)^{\frac{1}{3}}[-12 + \frac{1}{3}x] = 0
\end{align*}


This occurs when:
- (x)13=0(-x)^{\frac{1}{3}} = 0, which is impossible for x<0x < 0
- 12+13x=0-12 + \frac{1}{3}x = 0, which gives x=36x = 36, but this is outside our domain of x<0x < 0

For x=0x = 0:
Both formulations of the derivative approach 0 as xx approaches 0, so x=0x = 0 is also a critical point.

Therefore, our critical points are x=0x = 0 and x=367x = \frac{36}{7}.

Step 4: Determine where f'(x) > 0


For x<0x < 0:
f(x)=(x)13[12+13x] f'(x) = (-x)^{\frac{1}{3}}[-12 + \frac{1}{3}x]

Since (x)13>0(-x)^{\frac{1}{3}} > 0 for x<0x < 0, and [12+13x]<0[-12 + \frac{1}{3}x] < 0 for x<0x < 0 (because 13x<0\frac{1}{3}x < 0 and 12<0-12 < 0), we have f(x)<0f'(x) < 0 for all x<0x < 0.

For 0<x<3670 < x < \frac{36}{7}:
f(x)=x13[1273x] f'(x) = x^{\frac{1}{3}}[12 - \frac{7}{3}x]

Since x13>0x^{\frac{1}{3}} > 0 for x>0x > 0, and [1273x]>0[12 - \frac{7}{3}x] > 0 for x<367x < \frac{36}{7}, we have f(x)>0f'(x) > 0 for 0<x<3670 < x < \frac{36}{7}.

For x>367x > \frac{36}{7}:
f(x)=x13[1273x] f'(x) = x^{\frac{1}{3}}[12 - \frac{7}{3}x]

Since x13>0x^{\frac{1}{3}} > 0 for x>0x > 0, and [1273x]<0[12 - \frac{7}{3}x] < 0 for x>367x > \frac{36}{7}, we have f(x)<0f'(x) < 0 for x>367x > \frac{36}{7}.

Step 5: Identify the interval where f is increasing


Based on our analysis:
- For x<0x < 0: f(x)<0f'(x) < 0 (function is decreasing)
- For 0<x<3670 < x < \frac{36}{7}: f(x)>0f'(x) > 0 (function is increasing)
- For x>367x > \frac{36}{7}: f(x)<0f'(x) < 0 (function is decreasing)
- At x=0x = 0 and x=367x = \frac{36}{7}: f(x)=0f'(x) = 0 (function is neither increasing nor decreasing)

Since we're looking for where the function is strictly increasing (not just non-decreasing), we exclude the critical points.

Therefore, the set on which f(x)=x43(9x)f(x) = |x|^{\frac{4}{3}}(9 - x) is increasing is:

(0,367) \boxed{(0, \frac{36}{7})}

When finding intervals of increase/decrease, exclude critical points where the derivative equals zero, as the function is not strictly increasing or decreasing at those points.
(0,367) \boxed{(0, \frac{36}{7})}
C2
Difficulty: 6/10
Does the tangent to the curve y=(x1)2x+2y = \frac{(x - 1)^2}{x + 2} at (2,1)(2, 1) passes through the point (x,y)=(0,18)(x, y) = (0, \frac{1}{8})?

Exercise Tags

equation of tangent
differentiation: quotient rule
quotient rule

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Find the derivative of the function


Let u(x)=(x1)2u(x) = (x - 1)^2 and v(x)=x+2v(x) = x + 2

dydx=u(x)v(x)u(x)v(x)[v(x)]2 \begin{align*}
& \frac{dy}{dx} \\
&= \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}
\end{align*}


Finding the derivatives:

u(x)=ddx[(x1)2]=2(x1) \begin{align*}
& u'(x) \\
&= \frac{d}{dx}[(x - 1)^2] \\
&= 2(x - 1)
\end{align*}


v(x)=ddx[x+2]=1 \begin{align*}
& v'(x) \\
&= \frac{d}{dx}[x + 2] \\
&= 1
\end{align*}


Substituting into the quotient rule:

dydx=2(x1)(x+2)(x1)21(x+2)2 \begin{align*}
& \frac{dy}{dx} \\
&= \frac{2(x - 1)(x + 2) - (x - 1)^2 \cdot 1}{(x + 2)^2}
\end{align*}


Step 2: Evaluate the derivative at the point (2, 1)


At x=2x = 2:

dydxx=2=2(21)(2+2)(21)2(2+2)2=2(1)(4)(1)242=8116=716 \begin{align*}
& \frac{dy}{dx}\bigg|_{x=2} \\
&= \frac{2(2 - 1)(2 + 2) - (2 - 1)^2}{(2 + 2)^2} \\
&= \frac{2(1)(4) - (1)^2}{4^2} \\
&= \frac{8 - 1}{16} \\
&= \frac{7}{16}
\end{align*}


Step 3: Find the equation of the tangent line


The slope of the tangent line at (2,1)(2, 1) is m=716m = \frac{7}{16}

Using the point-slope form of a line:

yy1=m(xx1)y1=716(x2)y1=716x78y=716x78+1y=716x78+88y=716x+18 \begin{align*}
& y - y_1 = m(x - x_1) \\
&y - 1 = \frac{7}{16}(x - 2) \\
&y - 1 = \frac{7}{16}x - \frac{7}{8} \\
&y = \frac{7}{16}x - \frac{7}{8} + 1 \\
&y = \frac{7}{16}x - \frac{7}{8} + \frac{8}{8} \\
&y = \frac{7}{16}x + \frac{1}{8}
\end{align*}


Step 4: Find a point on the tangent line


Let's find a point with a simple x-value, say x=0x = 0:

y=7160+18y=0+18y=18 \begin{align*}
& y = \frac{7}{16} \cdot 0 + \frac{1}{8} \\
&y = 0 + \frac{1}{8} \\
&y = \frac{1}{8}
\end{align*}


Therefore, the point (0,18)(0, \frac{1}{8}) lies on the tangent line.

(x,y)=(0,18) \boxed{(x,y) = \left(0, \frac{1}{8}\right)}
Therefore, the point (0,18)(0, \frac{1}{8}) lies on the tangent line.

(x,y)=(0,18) \boxed{(x,y) = \left(0, \frac{1}{8}\right)}
C3
Difficulty: 1/10
Find the derivative of

ln(x9(x4+6)3x8+20x2+7)
\ln \left( \frac{x^9 (x^4 + 6)^3}{x^8 + 20x^2 + 7} \right)


when x=1.x=1.

Exercise Tags

Differentiation: general
differentiation: logarithmic
logarithms

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
Step 1: Use the logarithmic properties


We can use the property ln(ab)=ln(a)ln(b) \ln \left( \frac{a}{b} \right) = \ln(a) - \ln(b) to separate the terms:


ln(x9(x4+6)3x8+20x2+7)=
\ln \left( \frac{x^9 (x^4 + 6)^3}{x^8 + 20x^2 + 7} \right) =

ln(x9(x4+6)3)
\ln \left( x^9 (x^4 + 6)^3 \right) -

ln(x8+20x2+7)
\ln \left( x^8 + 20x^2 + 7 \right)



Now, apply the property ln(ab)=ln(a)+ln(b) \ln(ab) = \ln(a) + \ln(b) to the first term:

ln(x9(x4+6)3)=ln(x9)+ln((x4+6)3)
\ln \left( x^9 (x^4 + 6)^3 \right) = \ln(x^9) + \ln((x^4 + 6)^3)


Use the property ln(an)=nln(a) \ln(a^n) = n \ln(a) :

ln(x9)=9ln(x)
\ln(x^9) = 9 \ln(x)


ln((x4+6)3)=3ln(x4+6)
\ln((x^4 + 6)^3) = 3 \ln(x^4 + 6)


Thus, the expression becomes:

9ln(x)+3ln(x4+6)ln(x8+20x2+7)
9 \ln(x) + 3 \ln(x^4 + 6) - \ln(x^8 + 20x^2 + 7)


Step 2: Differentiate each term


Now, we differentiate each term separately. We will use basic derivative rules.

**Differentiate 9ln(x) 9 \ln(x) :**

ddx(9ln(x))=9x
\frac{d}{dx}(9 \ln(x)) = \frac{9}{x}


**Differentiate 3ln(x4+6) 3 \ln(x^4 + 6) :**

Using the chain rule:

ddx(3ln(x4+6))=3x4+6ddx(x4+6)=3x4+64x3=12x3x4+6
\begin{align*}
\frac{d}{dx}(3 \ln(x^4 + 6)) &= \frac{3}{x^4 + 6} \cdot \frac{d}{dx}(x^4 + 6) \\
&= \frac{3}{x^4 + 6} \cdot 4x^3 \\
&= \frac{12x^3}{x^4 + 6}
\end{align*}


**Differentiate ln(x8+20x2+7) - \ln(x^8 + 20x^2 + 7) :**

Using the chain rule:


ddx(ln(x8+20x2+7))=\frac{d}{dx} \left( - \ln(x^8 + 20x^2 + 7) \right) =
1x8+20x2+7ddx(x8+20x2+7)- \frac{1}{x^8 + 20x^2 + 7} \cdot \frac{d}{dx}(x^8 + 20x^2 + 7)



Now differentiate x8+20x2+7 x^8 + 20x^2 + 7 :

ddx(x8+20x2+7)=8x7+40x\frac{d}{dx}(x^8 + 20x^2 + 7) = 8x^7 + 40x

So the derivative of the third term is:

8x7+40xx8+20x2+7- \frac{8x^7 + 40x}{x^8 + 20x^2 + 7}

Step 3: Combine all terms


Now, we combine the derivatives:

9x+12x3x4+68x7+40xx8+20x2+7\frac{9}{x} + \frac{12x^3}{x^4 + 6} - \frac{8x^7 + 40x}{x^8 + 20x^2 + 7}

Step 4: Evaluate the derivative at x=1 x = 1


Substitute x=1 x = 1 into the expression for u(x) u'(x) and u(x) u(x) :

**First term:**

91=9\frac{9}{1} = 9

**Second term:**

12(1)3(1)4+6=127\frac{12(1)^3}{(1)^4 + 6} = \frac{12}{7}

**Third term:**

8(1)7+40(1)(1)8+20(1)2+7=8+401+20+7=4828=127\frac{8(1)^7 + 40(1)}{(1)^8 + 20(1)^2 + 7} = \frac{8 + 40}{1 + 20 + 7} = \frac{48}{28} = \frac{12}{7}

Now combine everything:

9+127127=99 + \frac{12}{7} - \frac{12}{7} = 9

9\boxed{9}
PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
9\boxed{9}

Word Problem Questions

Word Problem
D1
Difficulty: 1/10
A manufacturer wants to design an *open-top* cylindrical container that can hold exactly 1000 cubic centimeters of liquid. What dimensions should be used to minimize the amount of material used in its construction?

*Don't forget to show that your answer is a minimum and not a maximum!*

Exercise Tags

optimization
maximizing and minimizing

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
Step 1: Define Variables


The volume is:

V=πr2h=1000(Equation 1)
V = \pi r^2 h = 1000 \quad \text{(Equation 1)}


Step 2: Write the Surface Area Formula


The surface area is:

A=πr2+2πrh(Equation 2)
A = \pi r^2 + 2\pi r h \quad \text{(Equation 2)}


Step 3: Eliminate hh Using the Volume Constraint


Solve for hh:

h=1000πr2
h = \frac{1000}{\pi r^2}


Substitute into the surface area formula:

A=πr2+2000r.
A = \pi r^2 + \frac{2000}{r}.


Step 4: Minimize the Surface Area


Take the derivative:

dAdr=2πr2000r2
\frac{dA}{dr} = 2\pi r - \frac{2000}{r^2}


Set the derivative equal to 0:

2πr=2000r2r3=1000π.
2\pi r = \frac{2000}{r^2} \quad \Rightarrow \quad r^3 = \frac{1000}{\pi}.


Thus:

r=10π3.
r = \frac{10}{\sqrt[3]{\pi}}.


Step 5: Calculate and Simplify the Height hh


h=1000πr2.
h = \frac{1000}{\pi r^2}.


Since r=10π1/3r = \frac{10}{\pi^{1/3}}, we substitute:

h=1000π(10π1/3)2.
h = \frac{1000}{\pi \left( \frac{10}{\pi^{1/3}} \right)^2}.


(10π1/3)2=100π2/3.
\left( \frac{10}{\pi^{1/3}} \right)^2 = \frac{100}{\pi^{2/3}}.


h=1000π100π2/3=1000π2/3100π=10π2/3π.
h = \frac{1000}{\pi \cdot \frac{100}{\pi^{2/3}}} = \frac{1000 \cdot \pi^{2/3}}{100 \cdot \pi} = \frac{10 \cdot \pi^{2/3}}{\pi}.


h=10π1/3=10π1/3.
h = 10 \cdot \pi^{-1/3} = \frac{10}{\pi^{1/3}}.


Step 6: Verify the Solution Gives a Minimum


To confirm that this is a minimum, we take the second derivative:

dAdr=2πr2000r2,
\frac{dA}{dr} = 2\pi r - \frac{2000}{r^2},


d2Adr2=2π+4000r3.
\frac{d^2A}{dr^2} = 2\pi + \frac{4000}{r^3}.


Since r>0r > 0, both terms are positive:

d2Adr2>0.
\frac{d^2A}{dr^2} > 0.


This confirms the solution corresponds to a minimum.

Final Answer


The dimensions that minimize the material used are:

r=10π1/3,h=10π1/3.
\boxed{r = \frac{10}{\pi^{1/3}}, \quad h = \frac{10}{\pi^{1/3}}.}
PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
The dimensions that minimize the material used are:

r=10π1/3,h=10π1/3.
\boxed{r = \frac{10}{\pi^{1/3}}, \quad h = \frac{10}{\pi^{1/3}}.}
D2
Difficulty: 1/10
A parabola y=(xr1)(xr2) y = (x - r_1)(x - r_2) with roots r1<r2 r_1 < r_2 is changing in such a way that the distance between the roots is growing at a constant speed of 1 unit per second. When the distance between the roots is 2, what is the rate of change of the y y -coordinate of the vertex?

*Note:* The vertex of a parabola y=(xh)2+k y = (x - h)^2 + k is the point (h,k) (h, k) .

Exercise Tags

parabolas
implicit differentiation
relates rates

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
Step 1: Identify the Roots and Vertex


The parabola is given by the equation:

y=(xr1)(xr2).
y = (x - r_1)(x - r_2).


The roots are r1 r_1 and r2 r_2 , and the **distance between the roots** is:

d=r2r1.
d = r_2 - r_1.


The vertex of the parabola lies at the midpoint of the roots. The x-coordinate of the vertex is:

h=r1+r22.
h = \frac{r_1 + r_2}{2}.


The **y-coordinate of the vertex** is given by:

yvertex=d24.
y_{\text{vertex}} = -\frac{d^2}{4}.


Since the equation has a negative coefficient for the quadratic term, the parabola opens downward, meaning the vertex represents a maximum point.

Step 2: Differentiate the Vertex Formula


To find how the yy-coordinate of the vertex changes with time, we differentiate the formula for yvertex y_{\text{vertex}} with respect to time t t :

dyvertexdt=142ddddt.
\frac{dy_{\text{vertex}}}{dt} = -\frac{1}{4} \cdot 2d \cdot \frac{dd}{dt}.


Simplify the expression:

dyvertexdt=d2dddt.
\frac{dy_{\text{vertex}}}{dt} = -\frac{d}{2} \cdot \frac{dd}{dt}.


Step 3: Substitute Known Values


Given that:
d=2,dddt=1unit per second,
d = 2, \quad \frac{dd}{dt} = 1 \, \text{unit per second},


substitute these values into the equation:

dyvertexdt=221=1
\frac{dy_{\text{vertex}}}{dt} = -\frac{2}{2} \cdot 1 = -1


Step 4: Final Answer


Thus, the rate of change of the yy-coordinate of the vertex is:

1unit per second.
\boxed{-1} \, \text{unit per second}.


The negative sign means the vertex is moving downward as the roots move apart.
PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
1unit per second.
\boxed{1} \, \text{unit per second}.

Multi Part Questions

Multi-Part
E1
Difficulty: 7/10
A particle is travelling along the xx-axis in such a way that x(t)=2x''(t) = 2. Moreover, suppose that x(0)=1x(0) = 1 and x(1)=4x(1) = 4.

Exercise Tags

integrals

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access

Sub-questions:

E1 Part a)
Difficulty: 3/10
Find the explicit formula for x(t)x(t).

Exercise Tags

integrals
initial conditions

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
We are given:

x(t)=2.
x''(t) = 2.


To find the explicit formula for x(t)x(t), we integrate twice.

Step 1: Integrate x(t)x''(t) to find x(t)x'(t)



x(t)=2dt=2t+C1,
x'(t) = \int 2 \, dt = 2t + C_1,


where C1C_1 is a constant of integration.

Step 2: Integrate x(t)x'(t) to find x(t)x(t)


x(t)=(2t+C1)dt=t2+C1t+C2,
x(t) = \int \left( 2t + C_1 \right) \, dt = t^2 + C_1 t + C_2,


where C2C_2 is another constant of integration.

Step 3: Use Initial Conditions to Find C1C_1 and C2C_2


Given:
- x(0)=1x(0) = 1,
- x(1)=4x(1) = 4.

Apply the first initial condition x(0)=1x(0) = 1:

x(0)=02+C10+C2=1C2=1.
x(0) = 0^2 + C_1 \cdot 0 + C_2 = 1 \quad \Rightarrow \quad C_2 = 1.


Apply the second initial condition x(1)=4x(1) = 4:

x(1)=12+C11+C2=4.
x(1) = 1^2 + C_1 \cdot 1 + C_2 = 4.


Substitute C2=1C_2 = 1:

1+C1+1=4C1=2.
1 + C_1 + 1 = 4 \quad \Rightarrow \quad C_1 = 2.


Step 4: Write the Explicit Formula for x(t)x(t)


x(t)=t2+2t+1.
x(t) = t^2 + 2t + 1.



Final Answers


(a) The explicit formula for x(t)x(t) is:

x(t)=t2+2t+1.
x(t) = t^2 + 2t + 1.
PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
x(t)=t2+2t+1.
x(t) = t^2 + 2t + 1.
E1 Part b)
Difficulty: 1/10
Which time tt satisfies x(t)=0x'(t) = 0?

Exercise Tags

initial conditions

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
Step 1: Write the Expression for x(t)x'(t)


x(t)=2t+2.
x'(t) = 2t + 2.


Step 2: Solve for tt When x(t)=0x'(t) = 0


2t+2=0.
2t + 2 = 0.


2t=2t=1.
2t = -2 \quad \Rightarrow \quad t = -1.


Final Answers


(b) The time tt when x(t)=0x'(t) = 0 is:

t=1.
t = -1.
PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
t=1.
t = -1.
E2
Difficulty: 8/10
Consider the function f(x)=2xex2+1 f(x) = 2x e^{-x^2} + 1 .

Exercise Tags

graphing

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access

Sub-questions:

E2 Part a)
Difficulty: 1/10
Find the discontinuities, critical points, and inflection points (if any).

Exercise Tags

graphing
continuity
critical points
inflection points

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
(i) Discontinuities


The function is:

f(x)=2xex2+1.
f(x) = 2x e^{-x^2} + 1.


Both 2x2x (a polynomial) and ex2e^{-x^2} (an exponential function) are continuous for all xRx \in \mathbb{R}. Therefore, the sum of these functions is continuous everywhere.

Conclusion: There are no discontinuities.
\text{Conclusion: There are no discontinuities.}


(ii) Critical Points


**Step 1: Find the First Derivative f(x) f'(x) **

Using the product rule:

f(x)=2xex2+1,
f(x) = 2x e^{-x^2} + 1,


f(x)=ddx(2xex2)+ddx(1).
f'(x) = \frac{d}{dx} \left( 2x \cdot e^{-x^2} \right) + \frac{d}{dx}(1).


Applying the product rule to the first term:

ddx(2xex2)=2ex2+2x(2xex2).
\frac{d}{dx} \left( 2x \cdot e^{-x^2} \right) = 2 e^{-x^2} + 2x \cdot \left( -2x e^{-x^2} \right).


Simplify:

f(x)=2ex24x2ex2.
f'(x) = 2 e^{-x^2} - 4x^2 e^{-x^2}.


Factor out 2ex2 2 e^{-x^2} :

f(x)=2ex2(12x2).
f'(x) = 2 e^{-x^2} \left( 1 - 2x^2 \right).


**Step 2: Solve f(x)=0 f'(x) = 0 for Critical Points**

2ex2(12x2)=0.
2 e^{-x^2} \left( 1 - 2x^2 \right) = 0.


Since ex20 e^{-x^2} \neq 0 for all real xx, solve:

12x2=0.
1 - 2x^2 = 0.


2x2=1x2=12.
2x^2 = 1 \quad \Rightarrow \quad x^2 = \frac{1}{2}.


x=±12=±22.
x = \pm \frac{1}{\sqrt{2}} = \pm \frac{\sqrt{2}}{2}.


**Critical Points:**

x=±22.
x = \pm \frac{\sqrt{2}}{2}.


(iii) Inflection Points


**Step 1: Find the Second Derivative f(x) f''(x) **

Using the product rule on the first derivative:

f(x)=2ex2(12x2).
f'(x) = 2 e^{-x^2} \left( 1 - 2x^2 \right).


Differentiate:

f(x)=ddx(2ex2)(12x2)+2ex2ddx(12x2).
f''(x) = \frac{d}{dx} \left( 2 e^{-x^2} \right) \cdot \left( 1 - 2x^2 \right) + 2 e^{-x^2} \cdot \frac{d}{dx} \left( 1 - 2x^2 \right).


The derivative of 2ex2 2 e^{-x^2} is:

ddx(2ex2)=4xex2.
\frac{d}{dx} \left( 2 e^{-x^2} \right) = -4x e^{-x^2}.


Now substitute:

f(x)=4xex2(12x2)+2ex2(4x).
f''(x) = -4x e^{-x^2} \left( 1 - 2x^2 \right) + 2 e^{-x^2} \cdot (-4x).


Simplify:

f(x)=4xex2(12x2)8xex2.
f''(x) = -4x e^{-x^2} \left( 1 - 2x^2 \right) - 8x e^{-x^2}.


Factor out 4xex2 -4x e^{-x^2} :

f(x)=4xex2(32x2).
f''(x) = -4x e^{-x^2} \left( 3 - 2x^2 \right).


**Step 2: Solve f(x)=0 f''(x) = 0 for Inflection Points**

4xex2(32x2)=0.
-4x e^{-x^2} \left( 3 - 2x^2 \right) = 0.


Since ex20 e^{-x^2} \neq 0 , solve:

4x(32x2)=0.
-4x \left( 3 - 2x^2 \right) = 0.


This gives two cases:

1. x=0 x = 0 .
2. 32x2=0 3 - 2x^2 = 0 .

Solve the second equation:

2x2=3x2=32.
2x^2 = 3 \quad \Rightarrow \quad x^2 = \frac{3}{2}.


x=±32=±62.
x = \pm \sqrt{\frac{3}{2}} = \pm \frac{\sqrt{6}}{2}.


**Inflection Points:**

x=0,x=±62.
x = 0, \quad x = \pm \frac{\sqrt{6}}{2}.


---

Final Answer


- **Discontinuities:** None.
- **Critical Points:** x=±22 x = \pm \frac{\sqrt{2}}{2} .
- **Inflection Points:** x=0,x=±62. x = 0, \quad x = \pm \frac{\sqrt{6}}{2}.
PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
- **Discontinuities:** None.
- **Critical Points:** x=±22 x = \pm \frac{\sqrt{2}}{2} .
- **Inflection Points:** x=0,x=±62. x = 0, \quad x = \pm \frac{\sqrt{6}}{2}.
E2 Part b)
Difficulty: 1/10
Find all horizontal and vertical asymptotes (if any).

Exercise Tags

asymptotes
graphing

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
Step 1: Find Horizontal Asymptotes


We are analyzing the function:

f(x)=2xex2+1.
f(x) = 2x e^{-x^2} + 1.


Horizontal asymptotes occur when the function f(x) f(x) approaches a constant value as x x \to \infty or x x \to -\infty .

limxf(x)=limx(2xex2+1).
\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \left( 2x e^{-x^2} + 1 \right).


Since ex20 e^{-x^2} \to 0 very quickly as x x \to \infty , the first term 2xex2 2x e^{-x^2} also approaches 0:

limxf(x)=0+1=1.
\lim_{x \to \infty} f(x) = 0 + 1 = 1.


Now, check the behavior as x x \to -\infty :

limxf(x)=limx(2xex2+1).
\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left( 2x e^{-x^2} + 1 \right).


Similarly, as ex20 e^{-x^2} \to 0 , the term 2xex2 2x e^{-x^2} also approaches 0:

limxf(x)=0+1=1.
\lim_{x \to -\infty} f(x) = 0 + 1 = 1.


**Horizontal Asymptote:**

y=1.
y = 1.


---

Step 2: Find Vertical Asymptotes


A **vertical asymptote** occurs when the function f(x) f(x) becomes arbitrarily large (positively or negatively) as xx approaches a specific finite value. More formally, a function f(x) f(x) has a vertical asymptote at x=ax = a if:

limxaf(x)=±orlimxa+f(x)=±.
\lim_{x \to a^-} f(x) = \pm \infty \quad \text{or} \quad \lim_{x \to a^+} f(x) = \pm \infty.


Such asymptotic behavior typically arises when:
- The function has a division by zero, such as in 1xa \frac{1}{x - a} .
- There are logarithmic terms, like ln(xa) \ln(x - a) , which decrease without bound as the input approaches a critical point.
- Or other forms of singularities that force the function to grow indefinitely large.

---

### Step 2.1: Analyze the Function f(x)=2xex2+1 f(x) = 2x e^{-x^2} + 1

We now analyze the structure of the given function. It contains:
- A linear term 2x2x.
- An exponential decay term ex2e^{-x^2}, which approaches 00 rapidly as xx \to \infty or xx \to -\infty.

We are checking if there are any values of xx for which the function becomes undefined or grows without bound.

---

### Step 2.2: Look for Potential Asymptotes

Let’s examine the key term 2xex22x e^{-x^2}:
1. **Behavior as xx \to \infty:**
- As xx increases, ex2e^{-x^2} decays very quickly to 00. This decay outpaces the growth of the linear term 2x2x.
- Therefore, the product 2xex202x e^{-x^2} \to 0 as xx \to \infty.

2. **Behavior as xx \to -\infty:**
- Similarly, as xx becomes increasingly negative, the term ex2e^{-x^2} also approaches 00, and the product 2xex22x e^{-x^2} again approaches 00.

Because the function remains finite in both directions and there are no divisions by zero or undefined values for any finite xx, the function is continuous across all real numbers.

---

**Conclusion: There are no vertical asymptotes.** The function f(x)=2xex2+1 f(x) = 2x e^{-x^2} + 1 is well-defined and continuous everywhere for xRx \in \mathbb{R}, with no points where the function becomes arbitrarily large or undefined.


Final Answer


- **Horizontal Asymptote:** y=1 y = 1 .
- **Vertical Asymptotes:** None.
PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access
- **Horizontal Asymptote:** y=1 y = 1 .
- **Vertical Asymptotes:** None.
E2 Part c)
Difficulty: 7/10
(c) Use all the information above to create an accurate sketch of the curve of f(x) f(x) . Label all critical points, inflection points, and asymptotes, and provide justification for the overall shape of the curve.

Exercise Tags

graphing

Tag:

Use the tag filtering feature on the course homepage to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

PREMIUM WALKTHROUGH

Unlock Premium Content

Get instant access to detailed walkthroughs, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access

Graph from Desmos.com

Figure 1: all critical points, inflection points, and asymptotes

PREMIUM SOLUTION

Unlock Premium Content

Get instant access to detailed solutions, step-by-step explanations, and exclusive learning materials.

Unlock Now
Secure & Instant Access

Graph from Desmos.com

Figure 1: all critical points, inflection points, and asymptotes