Question A.1
(Max Marks: 2)
Find the average value of the function g(x)=sin(x)g(x) = \sin(x) on the interval [0,π][0, \pi].

(a) 1π \frac{1}{\pi}
(b) 2π \frac{2}{\pi}
(c) 2 2
(d) 0 0
(e) π2 \frac{\pi}{2}
Integrals: Average Value
integrals

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Recall the Formula for Average Value


The average value of a function f(x)f(x) over an interval [a,b][a, b] is given by the integral of the function over that interval, divided by the length of the interval.

The formula for the average value favgf_{avg} of a function ff on the interval [a,b][a, b] is:
favg=1baabf(x)dxf_{avg} = \frac{1}{b-a} \int_a^b f(x) dx


For our specific function g(x)=sin(x)g(x) = \sin(x) and the interval [0,π][0, \pi], we have a=0a=0 and b=πb=\pi.

So, we need to calculate:
gavg=1π00πsin(x)dxg_{avg} = \frac{1}{\pi - 0} \int_0^{\pi} \sin(x) dx


Step 2: Calculate the Definite Integral


First, we find the antiderivative of sin(x)\sin(x). The integral of sin(x)\sin(x) is cos(x)-\cos(x).

Next, we evaluate the definite integral 0πsin(x)dx\int_0^{\pi} \sin(x) dx using the Fundamental Theorem of Calculus.

We evaluate the antiderivative cos(x)-\cos(x) at the upper limit (x=πx=\pi) and subtract its value at the lower limit (x=0x=0).


Step 3: Calculate the Average Value


Now we substitute the value of the integral back into the average value formula.

Remember that the length of the interval is ba=π0=πb-a = \pi - 0 = \pi.

Divide the result of the integral (which is 2) by the length of the interval (π\pi) to get the average value.


gavg=1π00πsin(x)dx=1π0πsin(x)dx=1π[cos(x)]0π=1π((cos(π))(cos(0)))=1π(((1))((1)))=1π(1(1))=1π(1+1)=1π(2)=2π
\begin{align*}
g_{avg} &= \frac{1}{\pi - 0} \int_0^{\pi} \sin(x) dx \\
&= \frac{1}{\pi} \int_0^{\pi} \sin(x) dx \\
&= \frac{1}{\pi} \left[ -\cos(x) \right]_0^{\pi} \\
&= \frac{1}{\pi} \left( (-\cos(\pi)) - (-\cos(0)) \right) \\
&= \frac{1}{\pi} \left( (-(-1)) - (-(1)) \right) \\
&= \frac{1}{\pi} \left( 1 - (-1) \right) \\
&= \frac{1}{\pi} (1 + 1) \\
&= \frac{1}{\pi} (2) \\
&= \boxed{\frac{2}{\pi}}
\end{align*}

Access Restricted - Please Unlock Unlock Now
2π
\boxed{\frac{2}{\pi}}
Question A.2
(Max Marks: 2)
The integral 0r2π(r2x2)dx \int_0^r 2\pi (r^2 - x^2) dx computes:

(a) the volume of a sphere of radius r r .
(b) the area of a circle of radius r r .
(c) the surface area of a sphere of radius r r .
(d) the volume of a cylinder of height 2π 2\pi and radius r r .
(e) the circumference of a circle of radius r r .
integrals
Volume: Rotating Regions
Volume: Disks/Rings Method

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Analyze the Integrand and Context


The expression (r2x2) (r^2 - x^2) appears inside the integral. Recall the equation of a circle centered at the origin with radius r r : x2+y2=r2 x^2 + y^2 = r^2 . The upper semi-circle is given by y=r2x2 y = \sqrt{r^2 - x^2} .

The integral involves π(r2x2) \pi (r^2 - x^2) , which looks related to the disk method for finding volumes of revolution.

The volume of a solid generated by revolving the area under a curve y=f(x) y = f(x) from x=a x=a to x=b x=b around the x-axis is given by the disk method formula: V=abπ[f(x)]2dx V = \int_a^b \pi [f(x)]^2 dx .

Let's consider the function y=r2x2 y = \sqrt{r^2 - x^2} . If we revolve the area under this curve from x=0 x=0 to x=r x=r (which is a quarter-circle) around the x-axis, the volume generated is a hemisphere. Using the disk method, its volume would be:
Vhemi=0rπ(r2x2)2dx=0rπ(r2x2)dx V_{hemi} = \int_0^r \pi (\sqrt{r^2 - x^2})^2 dx = \int_0^r \pi (r^2 - x^2) dx


Step 2: Relate the Given Integral to the Geometric Formula


The integral in the question is 0r2π(r2x2)dx \int_0^r 2\pi (r^2 - x^2) dx .
We can factor out the 2: 20rπ(r2x2)dx 2 \int_0^r \pi (r^2 - x^2) dx .

Notice that 0rπ(r2x2)dx \int_0^r \pi (r^2 - x^2) dx is exactly the integral we identified as the volume of a hemisphere of radius r r .

Therefore, the given integral is 2×Vhemi 2 \times V_{hemi} .
Two hemispheres make a full sphere. So, the integral represents the volume of a sphere of radius r r .


Step 3: Confirm by Calculation (Optional but helpful)


We can directly calculate the integral to verify. The volume of a sphere is known to be 43πr3 \frac{4}{3}\pi r^3 . Let's see if the integral evaluates to this.

The calculation shows that the integral indeed equals the formula for the volume of a sphere. Therefore, the correct option is (a).



I=0r2π(r2x2)dx=2π0r(r2x2)dx=2π[r2xx33]0r=2π((r2(r)r33)(r2(0)033))=2π(r3r330)=2π(3r3r33)=2π(2r33)=43πr3
\begin{align*}
I &= \int_0^r 2\pi (r^2 - x^2) dx \\
&= 2\pi \int_0^r (r^2 - x^2) dx \\
&= 2\pi \left[ r^2x - \frac{x^3}{3} \right]_0^r \\
&= 2\pi \left( (r^2(r) - \frac{r^3}{3}) - (r^2(0) - \frac{0^3}{3}) \right) \\
&= 2\pi \left( r^3 - \frac{r^3}{3} - 0 \right) \\
&= 2\pi \left( \frac{3r^3 - r^3}{3} \right) \\
&= 2\pi \left( \frac{2r^3}{3} \right) \\
&= \boxed{\frac{4}{3}\pi r^3}
\end{align*}

Access Restricted - Please Unlock Unlock Now
(a)
Question A.3
(Max Marks: 2)
Find the area of the region enclosed by the curve y=x3 y = \sqrt[3]{x} , the y-axis, and the line y=3 y = 3 .

(a) 9 9
(b) 274 \frac{27}{4}
(c) 3 3
(d) 814 \frac{81}{4}
(e) 27 27
Area: General
Integrate wrt y

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Visualize and Define the Region


We need the area of the region bounded by the curve y=x3 y = \sqrt[3]{x} , the y-axis (which is the line x=0 x = 0 ), and the horizontal line y=3 y = 3 .
The curve y=x3 y = \sqrt[3]{x} passes through the origin (0,0) (0, 0) .
The region is bounded on the left by x=0 x = 0 , on the right by the curve, below by y=0 y = 0 (where the curve meets the y-axis), and above by y=3 y = 3 .

Since the region is defined by boundaries involving y y , it's convenient to integrate with respect to y.


Step 2: Express the Boundary Curve as x = f(y)


We need to express the right boundary curve in the form x=f(y) x = f(y) .

Given y=x3 y = \sqrt[3]{x} , we cube both sides to solve for x x :
x=y3 x = y^3

The left boundary is the y-axis, which has the equation x=0 x = 0 .


Step 3: Set Up the Integral for Area


When integrating with respect to y, the area between a right curve x=f(y) x = f(y) and a left curve x=g(y) x = g(y) from y=c y = c to y=d y = d is given by:
A=cd[f(y)g(y)]dy A = \int_c^d [f(y) - g(y)] dy


In our case:
The right curve is xright=y3 x_{right} = y^3 .
The left curve is xleft=0 x_{left} = 0 .
The limits of integration are the y-values defining the region's vertical extent, which are from y=0 y = 0 to y=3 y = 3 .

So, the integral for the area A A is:
A=03(y30)dy A = \int_0^3 (y^3 - 0) dy


Step 4: Calculate the Definite Integral


We evaluate the integral 03y3dy\int_0^3 y^3 dy.
The antiderivative of y3 y^3 is y44 \frac{y^4}{4} .
We evaluate this from y=0 y=0 to y=3 y=3 .

The result 81/4 81/4 corresponds to option (d).



A=03(y30)dy=03y3dy=[y44]03=(344)(044)=8140=814
\begin{align*}
A &= \int_0^3 (y^3 - 0) dy \\
&= \int_0^3 y^3 dy \\
&= \left[ \frac{y^4}{4} \right]_0^3 \\
&= \left( \frac{3^4}{4} \right) - \left( \frac{0^4}{4} \right) \\
&= \frac{81}{4} - 0 \\
&= \boxed{\frac{81}{4}}
\end{align*}

Access Restricted - Please Unlock Unlock Now
A=03(y30)dy=03y3dy=[y44]03=(344)(044)=8140=814
\begin{align*}
A &= \int_0^3 (y^3 - 0) dy \\
&= \int_0^3 y^3 dy \\
&= \left[ \frac{y^4}{4} \right]_0^3 \\
&= \left( \frac{3^4}{4} \right) - \left( \frac{0^4}{4} \right) \\
&= \frac{81}{4} - 0 \\
&= \boxed{\frac{81}{4}}
\end{align*}
Question A.4
(Max Marks: 2)
The velocity of a particle is given by v(t)=t21 v(t) = t^2 - 1 , in meters per second. What is the total distance travelled from t=0 t = 0 to t=2 t = 2 seconds?

(a) 0 0 meters
(b) 43 \frac{4}{3} meters
(c) 2 2 meters
(d) 83 \frac{8}{3} meters
(e) 23 \frac{2}{3} meters
Integrals: distance
Distance vs Displacement
Integrals: Absolute Value
Splitting Integral

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Understand Distance vs. Displacement


Total distance travelled is the integral of the speed, abv(t)dt \int_a^b |v(t)| dt . This accounts for any changes in direction.
Displacement is the integral of velocity, abv(t)dt \int_a^b v(t) dt , representing the net change in position.

Since the velocity can be negative, the particle might change direction. We need to integrate the absolute value of velocity to find the total distance.


Step 2: Find Where Velocity Changes Sign


We need to find where v(t)=0 v(t) = 0 within the interval [0,2] [0, 2] .
v(t)=t21=0 v(t) = t^2 - 1 = 0
(t1)(t+1)=0 (t - 1)(t + 1) = 0
The solutions are t=1 t = 1 and t=1 t = -1 .
Only t=1 t = 1 is within our interval [0,2] [0, 2] . This is where the particle changes direction.

Now we check the sign of v(t) v(t) on the subintervals:
On [0,1) [0, 1) : Choose t=0.5 t = 0.5 . v(0.5)=(0.5)21=0.251=0.75 v(0.5) = (0.5)^2 - 1 = 0.25 - 1 = -0.75 (Negative)
On (1,2] (1, 2] : Choose t=1.5 t = 1.5 . v(1.5)=(1.5)21=2.251=1.25 v(1.5) = (1.5)^2 - 1 = 2.25 - 1 = 1.25 (Positive)


Step 3: Set Up the Integral for Total Distance


We split the integral at t=1 t = 1 , taking the absolute value on each part.
Distance D=02v(t)dt=01t21dt+12t21dt D = \int_0^2 |v(t)| dt = \int_0^1 |t^2 - 1| dt + \int_1^2 |t^2 - 1| dt

Since v(t) v(t) is negative on [0,1) [0, 1) , t21=(t21)=1t2 |t^2 - 1| = -(t^2 - 1) = 1 - t^2 on this interval.
Since v(t) v(t) is positive on (1,2] (1, 2] , t21=t21 |t^2 - 1| = t^2 - 1 on this interval.

The integral becomes:
D=01(1t2)dt+12(t21)dt D = \int_0^1 (1 - t^2) dt + \int_1^2 (t^2 - 1) dt



Step 4: Calculate the Definite Integrals


We calculate each integral separately.
Integral 1: 01(1t2)dt \int_0^1 (1 - t^2) dt
Integral 2: 12(t21)dt \int_1^2 (t^2 - 1) dt

Add the results to find the total distance. The result is 2 2 , which matches option (c).



D=01(1t2)dt+12(t21)dt=[tt33]01+[t33t]12=((1133)(0033))+((2332)(1331))=(113)0+((8363)(1333))=(23)+((23)(23))=23+(23+23)=23+43=63=2
\begin{align*}
D &= \int_0^1 (1 - t^2) dt + \int_1^2 (t^2 - 1) dt \\
&= \left[ t - \frac{t^3}{3} \right]_0^1 + \left[ \frac{t^3}{3} - t \right]_1^2 \\
&= \left( (1 - \frac{1^3}{3}) - (0 - \frac{0^3}{3}) \right) + \left( (\frac{2^3}{3} - 2) - (\frac{1^3}{3} - 1) \right) \\
&= \left( 1 - \frac{1}{3} \right) - 0 + \left( (\frac{8}{3} - \frac{6}{3}) - (\frac{1}{3} - \frac{3}{3}) \right) \\
&= \left( \frac{2}{3} \right) + \left( (\frac{2}{3}) - (-\frac{2}{3}) \right) \\
&= \frac{2}{3} + \left( \frac{2}{3} + \frac{2}{3} \right) \\
&= \frac{2}{3} + \frac{4}{3} \\
&= \frac{6}{3} \\
&= \boxed{2}
\end{align*}

Access Restricted - Please Unlock Unlock Now

D=01(1t2)dt+12(t21)dt=[tt33]01+[t33t]12=((1133)(0033))+((2332)(1331))=(113)0+((8363)(1333))=(23)+((23)(23))=23+(23+23)=23+43=63=2
\begin{align*}
D &= \int_0^1 (1 - t^2) dt + \int_1^2 (t^2 - 1) dt \\
&= \left[ t - \frac{t^3}{3} \right]_0^1 + \left[ \frac{t^3}{3} - t \right]_1^2 \\
&= \left( (1 - \frac{1^3}{3}) - (0 - \frac{0^3}{3}) \right) + \left( (\frac{2^3}{3} - 2) - (\frac{1^3}{3} - 1) \right) \\
&= \left( 1 - \frac{1}{3} \right) - 0 + \left( (\frac{8}{3} - \frac{6}{3}) - (\frac{1}{3} - \frac{3}{3}) \right) \\
&= \left( \frac{2}{3} \right) + \left( (\frac{2}{3}) - (-\frac{2}{3}) \right) \\
&= \frac{2}{3} + \left( \frac{2}{3} + \frac{2}{3} \right) \\
&= \frac{2}{3} + \frac{4}{3} \\
&= \frac{6}{3} \\
&= \boxed{2}
\end{align*}

Question A.5
(Max Marks: 2)
What is the length of the curve y=23x3/2 y = \frac{2}{3}x^{3/2} from x=0 x = 0 to x=8 x = 8 ?

(a) 263 \frac{26}{3}
(b) 523 \frac{52}{3}
(c) 18 18
(d) 26 26
(e) 52 52
Integrals: Arc Length
Integrals: u-substitution

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Recall the Arc Length Formula


The arc length L L of a curve y=f(x) y = f(x) from x=a x = a to x=b x = b is given by the integral:

L=ab1+[f(x)]2dx L = \int_a^b \sqrt{1 + [f'(x)]^2} dx

First, we need to find the derivative of f(x)=y=23x3/2 f(x) = y = \frac{2}{3}x^{3/2} .


Step 2: Calculate the Derivative and its Square


Let f(x)=23x3/2 f(x) = \frac{2}{3}x^{3/2} .
Using the power rule, the derivative is:
f(x)=2332x(3/21)=1x1/2=x f'(x) = \frac{2}{3} \cdot \frac{3}{2} x^{(3/2 - 1)} = 1 \cdot x^{1/2} = \sqrt{x}

Now, square the derivative:
[f(x)]2=(x)2=x [f'(x)]^2 = (\sqrt{x})^2 = x


Step 3: Set Up the Arc Length Integral


Substitute [f(x)]2=x [f'(x)]^2 = x into the arc length formula with the interval [a,b]=[0,8] [a, b] = [0, 8] :
L=081+x dx L = \int_0^8 \sqrt{1 + x} \ dx


Step 4: Evaluate the Integral


This integral can be solved using a u-substitution.
Let u=1+x u = 1 + x . Then du=dx du = dx .
We also need to change the limits of integration:
When x=0 x = 0 , u=1+0=1 u = 1 + 0 = 1 .
When x=8 x = 8 , u=1+8=9 u = 1 + 8 = 9 .

The integral becomes:
L=19u du=19u1/2 du L = \int_1^9 \sqrt{u} \ du = \int_1^9 u^{1/2} \ du

Now, we find the antiderivative and evaluate. The result 52/3 52/3 corresponds to option (b).



L=19u1/2 du=[u3/23/2]19=[23u3/2]19=23(93/213/2)=23((9)31)=23(331)=23(271)=23(26)=523
\begin{align*}
L &= \int_1^9 u^{1/2} \ du \\
&= \left[ \frac{u^{3/2}}{3/2} \right]_1^9 \\
&= \left[ \frac{2}{3} u^{3/2} \right]_1^9 \\
&= \frac{2}{3} \left( 9^{3/2} - 1^{3/2} \right) \\
&= \frac{2}{3} \left( (\sqrt{9})^3 - 1 \right) \\
&= \frac{2}{3} \left( 3^3 - 1 \right) \\
&= \frac{2}{3} (27 - 1) \\
&= \frac{2}{3} (26) \\
&= \boxed{\frac{52}{3}}
\end{align*}

Access Restricted - Please Unlock Unlock Now
L=19u1/2 du=[u3/23/2]19=[23u3/2]19=23(93/213/2)=23((9)31)=23(331)=23(271)=23(26)=523
\begin{align*}
L &= \int_1^9 u^{1/2} \ du \\
&= \left[ \frac{u^{3/2}}{3/2} \right]_1^9 \\
&= \left[ \frac{2}{3} u^{3/2} \right]_1^9 \\
&= \frac{2}{3} \left( 9^{3/2} - 1^{3/2} \right) \\
&= \frac{2}{3} \left( (\sqrt{9})^3 - 1 \right) \\
&= \frac{2}{3} \left( 3^3 - 1 \right) \\
&= \frac{2}{3} (27 - 1) \\
&= \frac{2}{3} (26) \\
&= \boxed{\frac{52}{3}}
\end{align*}
Question A.6
(Max Marks: 2)
Which of the following is a correct expression for a Riemann sum of the function f(x)=x2 f(x) = x^2 over the interval [1,3] [1, 3] , using right endpoints?

(a) i=1n(1+2in)2n \sum_{i=1}^n (1 + \frac{2i}{n}) \cdot \frac{2}{n}
(b) i=1n(2in)22n \sum_{i=1}^n (\frac{2i}{n})^2 \cdot \frac{2}{n}
(c) i=1n(1+2in)22n \sum_{i=1}^n (1 + \frac{2i}{n})^2 \cdot \frac{2}{n}
(d) i=1n(1+in)21n \sum_{i=1}^n (1 + \frac{i}{n})^2 \cdot \frac{1}{n}
(e) i=1n(1+(2in)2)2n \sum_{i=1}^n (1 + (\frac{2i}{n})^2) \cdot \frac{2}{n}
Riemann Sums
Sigma notation

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Determine Subinterval Width Δx \Delta x


The interval is [a,b]=[1,3] [a, b] = [1, 3] . We are dividing it into n n subintervals.
The width of each subinterval is:
Δx=ban=31n=2n \Delta x = \frac{b - a}{n} = \frac{3 - 1}{n} = \frac{2}{n}


Step 2: Determine the Right Endpoints xi x_i


The formula for the right endpoint of the i i -th subinterval (where i i goes from 1 to n n ) is:
xi=a+iΔx x_i = a + i \Delta x
Substituting a=1 a = 1 and Δx=2n \Delta x = \frac{2}{n} :
xi=1+i(2n)=1+2in x_i = 1 + i \left(\frac{2}{n}\right) = 1 + \frac{2i}{n}


Step 3: Evaluate the Function at the Right Endpoints


The function is f(x)=x2 f(x) = x^2 . We need to evaluate f(xi) f(x_i) :
f(xi)=f(1+2in)=(1+2in)2 f(x_i) = f\left(1 + \frac{2i}{n}\right) = \left(1 + \frac{2i}{n}\right)^2


Step 4: Form the Riemann Sum


The Riemann sum using right endpoints is given by the formula i=1nf(xi)Δx \sum_{i=1}^n f(x_i) \Delta x .
Substitute the expressions we found for f(xi) f(x_i) and Δx \Delta x :
Rn=i=1n(1+2in)22n R_n = \sum_{i=1}^n \left(1 + \frac{2i}{n}\right)^2 \cdot \frac{2}{n}

This expression matches option (c).



Rn=i=1n(1+2in)22n
\boxed{R_n = \sum_{i=1}^n \left(1 + \frac{2i}{n}\right)^2 \cdot \frac{2}{n}}

Access Restricted - Please Unlock Unlock Now
This expression matches option (c).



Rn=i=1n(1+2in)22n
\boxed{R_n = \sum_{i=1}^n \left(1 + \frac{2i}{n}\right)^2 \cdot \frac{2}{n}}

Question A.7
(Max Marks: 2)
Suppose that f(x) f(x) is an odd, continuous function and that 0<a<b 0 < a < b . Then abf(x)dx \int_{-a}^{b} f(x) dx is equal to:

(a) 0 0
(b) 20af(x)dx 2 \int_{0}^{a} f(x) dx
(c) abf(x)dx \int_{a}^{b} f(x) dx
(d) abf(x)dx \int_{-a}^{-b} f(x) dx
(e) abf(x)dx -\int_{a}^{b} f(x) dx
Integrals: even/odd
Splitting Integral

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Recall Properties of Odd Functions and Integrals


A function f f is odd if f(x)=f(x) f(-x) = -f(x) for all x x .
A key property for definite integrals of odd functions is:
For any odd continuous function f f , ccf(x)dx=0 \int_{-c}^{c} f(x) dx = 0 for any c c in its domain.
We are asked to evaluate abf(x)dx \int_{-a}^{b} f(x) dx where 0<a<b 0 < a < b .


Step 2: Split the Integral Strategically


We can split the interval of integration [a,b] [-a, b] into two parts in a way that lets us use the property mentioned above. Since a<a<b -a < a < b , we can split the integral at x=a x = a :
abf(x)dx=aaf(x)dx+abf(x)dx \int_{-a}^{b} f(x) dx = \int_{-a}^{a} f(x) dx + \int_{a}^{b} f(x) dx


Step 3: Apply the Odd Function Integral Property


The first part of the split integral is aaf(x)dx \int_{-a}^{a} f(x) dx .
Since f(x) f(x) is an odd function, we know that:
aaf(x)dx=0 \int_{-a}^{a} f(x) dx = 0


Step 4: Combine the Results


Substitute the result from Step 3 back into the split integral equation from Step 2:
abf(x)dx=0+abf(x)dx \int_{-a}^{b} f(x) dx = 0 + \int_{a}^{b} f(x) dx
abf(x)dx=abf(x)dx \int_{-a}^{b} f(x) dx = \int_{a}^{b} f(x) dx

This result matches option (c).



abf(x)dx=aaf(x)dx+abf(x)dx=0+abf(x)dx(since f is odd)=abf(x)dx
\begin{align*}
\int_{-a}^{b} f(x) dx &= \int_{-a}^{a} f(x) dx + \int_{a}^{b} f(x) dx \\
&= 0 + \int_{a}^{b} f(x) dx \quad (\text{since } f \text{ is odd}) \\
&= \boxed{\int_{a}^{b} f(x) dx}
\end{align*}

Access Restricted - Please Unlock Unlock Now
This result matches option (c).
Question A.8
(Max Marks: 2)
Define f(x)=x0t2et6dt f(x) = \int_{-x}^{0} t^2 e^{-t^6} dt and g(x)=0xt2et6dt g(x) = \int_{0}^{x} t^2 e^{-t^6} dt , each with domain x[0,) x \in [0, \infty) . Which of the following is true? (Only one is true.)

(a) f(x)=g(x) f(x) = g(x) for all x[0,) x \in [0, \infty)
(b) f(x)=g(x) f'(x) = -g'(x) for all x[0,) x \in [0, \infty)
(c) f(x) f(x) is decreasing and g(x) g(x) is increasing on [0,) [0, \infty)
(d) f(x)=0 f(x) = 0 for all x[0,) x \in [0, \infty)
(e) f(x)<0 f(x) < 0 for all x(0,) x \in (0, \infty)
Fundamental Theorem of Calculus
Integrals: even/odd
Integrals: u-substitution

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Analyze the Integrand


Let h(t)=t2et6 h(t) = t^2 e^{-t^6} . Let's check if it's even or odd.
h(t)=(t)2e(t)6=t2et6=h(t) h(-t) = (-t)^2 e^{-(-t)^6} = t^2 e^{-t^6} = h(t)
Since h(t)=h(t) h(-t) = h(t) , the integrand h(t) h(t) is an even function.


Step 2: Relate f(x) and g(x) using Substitution


Consider f(x)=x0h(t)dt f(x) = \int_{-x}^{0} h(t) dt . Let's use the substitution u=t u = -t .
This means t=u t = -u and dt=du dt = -du .
We also change the limits of integration:
When t=x t = -x , u=(x)=x u = -(-x) = x .
When t=0 t = 0 , u=0=0 u = -0 = 0 .

Substitute into the integral for f(x) f(x) :
f(x)=u=xu=0h(u)(du) f(x) = \int_{u=x}^{u=0} h(-u) (-du)
Since h(t) h(t) is even, h(u)=h(u) h(-u) = h(u) .
f(x)=x0h(u)(du) f(x) = \int_{x}^{0} h(u) (-du)
Using the property ab=ba \int_a^b = -\int_b^a , we flip the limits and remove the negative sign from du -du :
f(x)=0xh(u)du f(x) = \int_{0}^{x} h(u) du

Now compare this to g(x)=0xh(t)dt g(x) = \int_{0}^{x} h(t) dt . Changing the variable of integration from t t to u u doesn't change the value.
Therefore, f(x)=0xh(u)du=g(x) f(x) = \int_{0}^{x} h(u) du = g(x) .

So, f(x)=g(x) f(x) = g(x) for all x x in the domain.


Step 3: Evaluate the Options


Based on the finding that f(x)=g(x) f(x) = g(x) :

(a) f(x)=g(x) f(x) = g(x) for all x[0,) x \in [0, \infty) . This is TRUE.

(b) f(x)=g(x) f'(x) = -g'(x) for all x[0,) x \in [0, \infty) . Since f(x)=g(x) f(x)=g(x) , their derivatives must be equal: f(x)=g(x) f'(x)=g'(x) . Let's find g(x) g'(x) using FTC Part 1: g(x)=ddx0xt2et6dt=x2ex6 g'(x) = \frac{d}{dx} \int_{0}^{x} t^2 e^{-t^6} dt = x^2 e^{-x^6} . So f(x)=x2ex6 f'(x) = x^2 e^{-x^6} . The statement f(x)=g(x) f'(x)=-g'(x) would imply x2ex6=x2ex6 x^2 e^{-x^6} = -x^2 e^{-x^6} , which is only true if x=0 x=0 . Thus, the statement is FALSE for x>0 x>0 .

(c) f(x) f(x) is decreasing and g(x) g(x) is increasing on [0,) [0, \infty) . We found f(x)=g(x)=x2ex6 f'(x) = g'(x) = x^2 e^{-x^6} . Since x20 x^2 \ge 0 and ex6>0 e^{-x^6} > 0 , both derivatives are non-negative (0 \ge 0 ). Therefore, both functions are increasing (or non-decreasing). FALSE.

(d) f(x)=0 f(x) = 0 for all x[0,) x \in [0, \infty) . This implies g(x)=0 g(x)=0 . But g(x)=0xt2et6dt g(x) = \int_{0}^{x} t^2 e^{-t^6} dt . The integrand t2et6 t^2 e^{-t^6} is strictly positive for t0 t \ne 0 . For x>0 x > 0 , g(x) g(x) is the integral of a positive function over an interval of positive length, so g(x)>0 g(x) > 0 . FALSE.

(e) f(x)<0 f(x) < 0 for all x(0,) x \in (0, \infty) . Since f(x)=g(x) f(x)=g(x) and we found g(x)>0 g(x) > 0 for x>0 x > 0 , this is FALSE.

The relationship between integrals of symmetric functions over symmetric limits is key. For an EVEN function h(t)h(t), x0h(t)dt=0xh(t)dt \int_{-x}^0 h(t) dt = \int_0^x h(t) dt . For an ODD function h(t)h(t), x0h(t)dt=0xh(t)dt \int_{-x}^0 h(t) dt = -\int_0^x h(t) dt .

The only true statement is (a).

Statement (a) is true: f(x)=g(x) \boxed{\text{Statement (a) is true: } f(x) = g(x)}
Access Restricted - Please Unlock Unlock Now
Statement (a) is true: f(x)=g(x) \boxed{\text{Statement (a) is true: } f(x) = g(x)}
Question A.9
(Max Marks: 2)
The series n=12n+1+3n14n \sum_{n=1}^{\infty} \frac{2^{n+1} + 3^{n-1}}{4^n}

(a) converges to 3 3
(b) diverges
(c) converges to 2 2
(d) converges to 1 1
(e) converges to 103 \frac{10}{3}
Series
Series: Find the Value
Series: Geometric

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Split the Series


We can split the given series into two separate series using the properties of summation:
n=12n+1+3n14n=n=12n+14n+n=13n14n \sum_{n=1}^{\infty} \frac{2^{n+1} + 3^{n-1}}{4^n} = \sum_{n=1}^{\infty} \frac{2^{n+1}}{4^n} + \sum_{n=1}^{\infty} \frac{3^{n-1}}{4^n}


Step 2: Analyze the First Series


Let's simplify the first part: n=12n+14n \sum_{n=1}^{\infty} \frac{2^{n+1}}{4^n}
Rewrite 2n+1 2^{n+1} as 22n 2 \cdot 2^n .
The series becomes n=122n4n=n=12(24)n=n=12(12)n \sum_{n=1}^{\infty} \frac{2 \cdot 2^n}{4^n} = \sum_{n=1}^{\infty} 2 \left(\frac{2}{4}\right)^n = \sum_{n=1}^{\infty} 2 \left(\frac{1}{2}\right)^n
This is a geometric series with first term a a occurring at n=1 n=1 and common ratio r r .
Common ratio r=12 r = \frac{1}{2} . Since r<1 |r| < 1 , the series converges.
First term (when n=1 n=1 ): a=2(12)1=212=1 a = 2 \left(\frac{1}{2}\right)^1 = 2 \cdot \frac{1}{2} = 1 .

The sum of a convergent geometric series starting from n=1 n=1 is a1r \frac{a}{1-r} , where a a is the first term (n=1n=1) and r r is the common ratio (r<1|r|<1).

Sum of the first series = 111/2=11/2=2 \frac{1}{1 - 1/2} = \frac{1}{1/2} = 2 .


Step 3: Analyze the Second Series


Let's simplify the second part: n=13n14n \sum_{n=1}^{\infty} \frac{3^{n-1}}{4^n}
Rewrite 3n1 3^{n-1} as 3n31=133n 3^n \cdot 3^{-1} = \frac{1}{3} \cdot 3^n .
The series becomes n=1133n4n=n=113(34)n \sum_{n=1}^{\infty} \frac{\frac{1}{3} \cdot 3^n}{4^n} = \sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{3}{4}\right)^n
This is a geometric series.
Common ratio r=34 r = \frac{3}{4} . Since r<1 |r| < 1 , the series converges.
First term (when n=1 n=1 ): a=13(34)1=1334=14 a = \frac{1}{3} \left(\frac{3}{4}\right)^1 = \frac{1}{3} \cdot \frac{3}{4} = \frac{1}{4} .

Sum of the second series = a1r=1/413/4=1/41/4=1 \frac{a}{1-r} = \frac{1/4}{1 - 3/4} = \frac{1/4}{1/4} = 1 .


Step 4: Calculate the Total Sum


The sum of the original series is the sum of the two parts:
Total Sum = (Sum of first series) + (Sum of second series) = 2+1=3 2 + 1 = 3 .

This corresponds to option (a).



S=n=12n+14n+n=13n14n=n=12(12)n+n=113(34)n=(first term11r1)+(first term21r2)=(2(1/2)111/2)+((1/3)(3/4)113/4)=(11/2)+(1/41/4)=2+1=3
\begin{align*}
S &= \sum_{n=1}^{\infty} \frac{2^{n+1}}{4^n} + \sum_{n=1}^{\infty} \frac{3^{n-1}}{4^n} \\
&= \sum_{n=1}^{\infty} 2 \left(\frac{1}{2}\right)^n + \sum_{n=1}^{\infty} \frac{1}{3} \left(\frac{3}{4}\right)^n \\
&= \left( \frac{\text{first term}_1}{1-r_1} \right) + \left( \frac{\text{first term}_2}{1-r_2} \right) \\
&= \left( \frac{2(1/2)^1}{1 - 1/2} \right) + \left( \frac{(1/3)(3/4)^1}{1 - 3/4} \right) \\
&= \left( \frac{1}{1/2} \right) + \left( \frac{1/4}{1/4} \right) \\
&= 2 + 1 \\
&= \boxed{3}
\end{align*}

Access Restricted - Please Unlock Unlock Now
This corresponds to option (a).
Question A.10
(Max Marks: 2)
Consider the series n=1(1)nn \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} . Which of the following is true? (Only one is true.)

(a) The series diverges because limn1n=0 \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0 .
(b) The series converges by the Limit Comparison Test with 1n \sum \frac{1}{n} .
(c) The series converges absolutely.
(d) The series converges conditionally.
(e) The series diverges by the p-series test.
Series: Alternating Series Test
Series
Series: Convergence/Divergence
Convergence test: p-test

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Test for Convergence using Alternating Series Test (AST)


The series is n=1(1)nbn \sum_{n=1}^{\infty} (-1)^n b_n where bn=1n b_n = \frac{1}{\sqrt{n}} .
We check the two conditions for the AST:

1. Is bn b_n eventually non-increasing?
bn+1=1n+1 b_{n+1} = \frac{1}{\sqrt{n+1}} and bn=1n b_n = \frac{1}{\sqrt{n}} . Since n+1>n \sqrt{n+1} > \sqrt{n} for n1 n \ge 1 , we have 1n+1<1n \frac{1}{\sqrt{n+1}} < \frac{1}{\sqrt{n}} . So, bn+1<bn b_{n+1} < b_n for all n1 n \ge 1 . The sequence bn b_n is decreasing. Yes.

2. Is limnbn=0 \lim_{n\to\infty} b_n = 0 ?
limn1n=0 \lim_{n\to\infty} \frac{1}{\sqrt{n}} = 0 . Yes.

Since both conditions of the Alternating Series Test are met, the series n=1(1)nn \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} converges.


Step 2: Test for Absolute Convergence


We need to determine if the series of absolute values, n=1(1)nn \sum_{n=1}^{\infty} \left| \frac{(-1)^n}{\sqrt{n}} \right| , converges.
n=1(1)nn=n=11n=n=11n1/2 \sum_{n=1}^{\infty} \left| \frac{(-1)^n}{\sqrt{n}} \right| = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{n^{1/2}}

This is a p-series with p=1/2 p = 1/2 .
A p-series n=11np \sum_{n=1}^{\infty} \frac{1}{n^p} converges if p>1 p > 1 and diverges if p1 p \le 1 .
Since p=1/21 p = 1/2 \le 1 , the series n=11n1/2 \sum_{n=1}^{\infty} \frac{1}{n^{1/2}} diverges.

Therefore, the original series does not converge absolutely.


Step 3: Determine Conditional or Absolute Convergence


The series n=1(1)nn \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}} converges (by AST).
The series of absolute values n=11n \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} diverges (by p-series test).

When a series converges, but its series of absolute values diverges, the series converges conditionally.


Step 4: Evaluate the Options


(a) False. The condition limbn=0 \lim b_n = 0 is necessary for AST convergence but doesn't imply divergence.
(b) False. The Limit Comparison Test is for series with positive terms. Applying it to the absolute series 1n \sum \frac{1}{\sqrt{n}} compared to 1n \sum \frac{1}{n} gives lim1/n1/n=limn= \lim \frac{1/\sqrt{n}}{1/n} = \lim \sqrt{n} = \infty , which is inconclusive (or shows 1/n \sum 1/\sqrt{n} diverges faster). Also, the original series is not a positive series.
(c) False. The series does not converge absolutely.
(d) True. The series converges conditionally.
(e) False. The p-series test shows the *absolute* series diverges, but the original alternating series converges by AST.


The series converges conditionally. \boxed{\text{The series converges conditionally.}}
Access Restricted - Please Unlock Unlock Now
(d)
Question B.1 (a)
(Max Marks: 5)
Evaluate the integral x2sin(x)dx \int x^2 \sin(x) dx .
Integrals: logarithms
Integrals: Integration By Parts

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Apply Integration by Parts (First Time)


The formula for integration by parts is udv=uvvdu \int u dv = uv - \int v du .
We need to choose u u and dv dv . Using the LIATE (Logarithmic, Inverse trig, Algebraic, Trigonometric, Exponential) heuristic, we choose the algebraic part for u u .

Let u=x2 u = x^2 and dv=sin(x)dx dv = \sin(x) dx .
Then, we find du du and v v :
du=2xdx du = 2x dx
v=sin(x)dx=cos(x) v = \int \sin(x) dx = -\cos(x)

Now, apply the formula:
x2sin(x)dx=x2(cos(x))(cos(x))(2xdx) \int x^2 \sin(x) dx = x^2(-\cos(x)) - \int (-\cos(x))(2x dx)
=x2cos(x)+2xcos(x)dx = -x^2\cos(x) + 2 \int x\cos(x) dx

We now have a new integral, xcos(x)dx \int x\cos(x) dx , which also requires integration by parts.


Step 2: Apply Integration by Parts (Second Time)


For the integral xcos(x)dx \int x\cos(x) dx :
Let u2=x u_2 = x and dv2=cos(x)dx dv_2 = \cos(x) dx .
Then, we find du2 du_2 and v2 v_2 :
du2=dx du_2 = dx
v2=cos(x)dx=sin(x) v_2 = \int \cos(x) dx = \sin(x)

Apply the formula to this part:
xcos(x)dx=xsin(x)sin(x)dx \int x\cos(x) dx = x\sin(x) - \int \sin(x) dx
=xsin(x)(cos(x)) = x\sin(x) - (-\cos(x))
=xsin(x)+cos(x) = x\sin(x) + \cos(x)


Step 3: Substitute Back and Combine


Now substitute the result from Step 2 back into the expression from Step 1:
x2sin(x)dx=x2cos(x)+2(xsin(x)+cos(x))+C \int x^2 \sin(x) dx = -x^2\cos(x) + 2 \left( x\sin(x) + \cos(x) \right) + C
=x2cos(x)+2xsin(x)+2cos(x)+C = -x^2\cos(x) + 2x\sin(x) + 2\cos(x) + C
We can group the terms with cos(x) \cos(x) :
=(2x2)cos(x)+2xsin(x)+C = (2 - x^2)\cos(x) + 2x\sin(x) + C

When performing integration by parts multiple times, keep track of your substitutions and be careful with signs. The LIATE heuristic (Logarithmic, Inverse Trig, Algebraic, Trig, Exponential) is a good guide for choosing uu.



Let I=x2sin(x)dxFirst IBP: u=x2,dv=sin(x)dxdu=2xdx,v=cos(x)I=x2cos(x)(cos(x))(2xdx)=x2cos(x)+2xcos(x)dxSecond IBP for xcos(x)dx:u2=x,dv2=cos(x)dxdu2=dx,v2=sin(x)xcos(x)dx=xsin(x)sin(x)dx=xsin(x)(cos(x))=xsin(x)+cos(x)Substitute back: I=x2cos(x)+2(xsin(x)+cos(x))+C=x2cos(x)+2xsin(x)+2cos(x)+C=(2x2)cos(x)+2xsin(x)+C
\begin{align*}
\text{Let } I &= \int x^2 \sin(x) dx \\
\text{First IBP: } & u = x^2, \quad dv = \sin(x) dx \\
& du = 2x dx, \quad v = -\cos(x) \\
I &= -x^2\cos(x) - \int (-\cos(x))(2x dx) \\
&= -x^2\cos(x) + 2 \int x\cos(x) dx \\
\text{Second IBP for } \int x&\cos(x) dx: \quad u_2 = x, \quad dv_2 = \cos(x) dx \\
& du_2 = dx, \quad v_2 = \sin(x) \\
\int x\cos(x) dx &= x\sin(x) - \int \sin(x) dx \\
&= x\sin(x) - (-\cos(x)) \\
&= x\sin(x) + \cos(x) \\
\text{Substitute back: } \\
I &= -x^2\cos(x) + 2(x\sin(x) + \cos(x)) + C \\
&= -x^2\cos(x) + 2x\sin(x) + 2\cos(x) + C \\
&= \boxed{(2 - x^2)\cos(x) + 2x\sin(x) + C}
\end{align*}

Access Restricted - Please Unlock Unlock Now

Let I=(ln(x))2dxFirst IBP: u=(ln(x))2,dv=dxdu=2ln(x)1xdx,v=xI=x(ln(x))2x(2ln(x)1x)dx=x(ln(x))22ln(x)dxSecond IBP for ln(x)dx:u2=ln(x),dv2=dxdu2=1xdx,v2=xln(x)dx=xln(x)x1xdx=xln(x)1dx=xln(x)xSubstitute back: I=x(ln(x))22(xln(x)x)+C=x(ln(x))22xln(x)+2x+C
\begin{align*}
\text{Let } I &= \int (\ln(x))^2 dx \\
\text{First IBP: } & u = (\ln(x))^2, \quad dv = dx \\
& du = 2\ln(x) \cdot \frac{1}{x} dx, \quad v = x \\
I &= x(\ln(x))^2 - \int x \left(2\ln(x) \frac{1}{x}\right) dx \\
&= x(\ln(x))^2 - 2 \int \ln(x) dx \\
\text{Second IBP for } \int &\ln(x) dx: \quad u_2 = \ln(x), \quad dv_2 = dx \\
& du_2 = \frac{1}{x} dx, \quad v_2 = x \\
\int \ln(x) dx &= x\ln(x) - \int x \cdot \frac{1}{x} dx \\
&= x\ln(x) - \int 1 dx \\
&= x\ln(x) - x \\
\text{Substitute back: } \\
I &= x(\ln(x))^2 - 2(x\ln(x) - x) + C \\
&= \boxed{x(\ln(x))^2 - 2x\ln(x) + 2x + C}
\end{align*}

Question B.1 (b)
(Max Marks: 5)
Evaluate the integral e2xex1dx \int \frac{e^{2x}}{\sqrt{e^x - 1}} dx .

differentiation: implicit
implicit differentiation

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Choose an Appropriate Substitution


The expression ex1 \sqrt{e^x - 1} in the denominator is a good candidate for substitution. Let's try substituting for the entire square root to simplify it.

Let u=ex1 u = \sqrt{e^x - 1} .
Squaring both sides gives u2=ex1 u^2 = e^x - 1 .
From this, we can express ex e^x in terms of u u : ex=u2+1 e^x = u^2 + 1 .

Now, we need to find dx dx in terms of du du . Differentiate ex=u2+1 e^x = u^2 + 1 implicitly with respect to x x for the left side and u u for the right side (or solve for xx first: x=ln(u2+1)x = \ln(u^2+1), then dx=2uu2+1dudx = \frac{2u}{u^2+1} du).
Using implicit differentiation on ex=u2+1 e^x = u^2 + 1 :
exdx=2udu e^x dx = 2u du .

We also need to express the numerator e2x e^{2x} in terms of u u .
e2x=(ex)2=(u2+1)2 e^{2x} = (e^x)^2 = (u^2 + 1)^2 .

Alternatively, we can write the integral as exexdxex1 \int \frac{e^x \cdot e^x dx}{\sqrt{e^x - 1}} . We already have exdx=2udu e^x dx = 2u du and ex=u2+1 e^x = u^2 + 1 . This approach seems more direct.

A common strategy for integrals involving aex+b \sqrt{a e^x + b} or similar expressions is to let u u be the entire square root, or the expression inside the square root. Letting u=ex1 u = \sqrt{e^x - 1} simplifies the denominator directly to u u .


Step 2: Substitute into the Integral


The integral is I=e2xex1dx=exexdxex1 I = \int \frac{e^{2x}}{\sqrt{e^x - 1}} dx = \int \frac{e^x \cdot e^x dx}{\sqrt{e^x - 1}} .
Substitute the expressions found in Step 1:
Numerator term ex=u2+1 e^x = u^2 + 1 .
Denominator ex1=u \sqrt{e^x - 1} = u .
Differential term exdx=2udu e^x dx = 2u du .

So, the integral becomes:
I=(u2+1)(2udu)u I = \int \frac{(u^2 + 1) (2u du)}{u}


Step 3: Simplify and Integrate with Respect to u


The u u in the numerator and denominator cancels out (assuming u0 u \ne 0 , which is true if ex1>0 e^x - 1 > 0 , i.e., x>0 x > 0 ):
I=2(u2+1)du I = \int 2(u^2 + 1) du
I=(2u2+2)du I = \int (2u^2 + 2) du

Now, find the antiderivative using the power rule for integration:
I=2u33+2u+C I = 2 \frac{u^3}{3} + 2u + C , where C C is the constant of integration.
I=23u3+2u+C I = \frac{2}{3}u^3 + 2u + C


Step 4: Substitute Back to the Original Variable x


Recall our substitution: u=ex1=(ex1)1/2 u = \sqrt{e^x - 1} = (e^x - 1)^{1/2} .
Substitute this back into the expression for I I :
I=23(ex1)3+2ex1+C I = \frac{2}{3}(\sqrt{e^x - 1})^3 + 2\sqrt{e^x - 1} + C
I=23(ex1)3/2+2(ex1)1/2+C I = \frac{2}{3}(e^x - 1)^{3/2} + 2(e^x - 1)^{1/2} + C

This is a correct answer, but it can be simplified by factoring out 2(ex1)1/2 2(e^x - 1)^{1/2} :
I=2(ex1)1/2[13(ex1)1+1]+C I = 2(e^x - 1)^{1/2} \left[ \frac{1}{3}(e^x - 1)^1 + 1 \right] + C
I=2ex1[ex13+33]+C I = 2\sqrt{e^x - 1} \left[ \frac{e^x - 1}{3} + \frac{3}{3} \right] + C
I=2ex1[ex1+33]+C I = 2\sqrt{e^x - 1} \left[ \frac{e^x - 1 + 3}{3} \right] + C
I=2ex1[ex+23]+C I = 2\sqrt{e^x - 1} \left[ \frac{e^x + 2}{3} \right] + C
I=23(ex+2)ex1+C I = \frac{2}{3}(e^x + 2)\sqrt{e^x - 1} + C

This is the simplified expression for the integral.



Let u=ex1u2=ex1ex=u2+1exdx=2udue2xex1dx=exexdxex1=(u2+1)(2udu)u=2(u2+1)du=(2u2+2)du=2u33+2u+C=23(ex1)3+2ex1+C=23(ex1)3/2+2(ex1)1/2+C=2(ex1)1/2[13(ex1)+1]+C=2ex1[ex1+33]+C=23(ex+2)ex1+C
\begin{align*}
\text{Let } u &= \sqrt{e^x - 1} \\
u^2 &= e^x - 1 \\
e^x &= u^2 + 1 \\
e^x dx &= 2u du \\
\int \frac{e^{2x}}{\sqrt{e^x - 1}} dx &= \int \frac{e^x \cdot e^x dx}{\sqrt{e^x - 1}} \\
&= \int \frac{(u^2+1)(2u du)}{u} \\
&= \int 2(u^2+1) du \\
&= \int (2u^2 + 2) du \\
&= 2\frac{u^3}{3} + 2u + C \\
&= \frac{2}{3}(\sqrt{e^x - 1})^3 + 2\sqrt{e^x - 1} + C \\
&= \frac{2}{3}(e^x - 1)^{3/2} + 2(e^x - 1)^{1/2} + C \\
&= 2(e^x - 1)^{1/2} \left[ \frac{1}{3}(e^x - 1) + 1 \right] + C \\
&= 2\sqrt{e^x - 1} \left[ \frac{e^x - 1 + 3}{3} \right] + C \\
&= \boxed{\frac{2}{3}(e^x + 2)\sqrt{e^x - 1} + C}
\end{align*}

Access Restricted - Please Unlock Unlock Now

Let u=ex1u2=ex1ex=u2+1exdx=2udue2xex1dx=exexdxex1=(u2+1)(2udu)u=2(u2+1)du=(2u2+2)du=2u33+2u+C=23(ex1)3+2ex1+C=23(ex1)3/2+2(ex1)1/2+C=2(ex1)1/2[13(ex1)+1]+C=2ex1[ex1+33]+C=23(ex+2)ex1+C
\begin{align*}
\text{Let } u &= \sqrt{e^x - 1} \\
u^2 &= e^x - 1 \\
e^x &= u^2 + 1 \\
e^x dx &= 2u du \\
\int \frac{e^{2x}}{\sqrt{e^x - 1}} dx &= \int \frac{e^x \cdot e^x dx}{\sqrt{e^x - 1}} \\
&= \int \frac{(u^2+1)(2u du)}{u} \\
&= \int 2(u^2+1) du \\
&= \int (2u^2 + 2) du \\
&= 2\frac{u^3}{3} + 2u + C \\
&= \frac{2}{3}(\sqrt{e^x - 1})^3 + 2\sqrt{e^x - 1} + C \\
&= \frac{2}{3}(e^x - 1)^{3/2} + 2(e^x - 1)^{1/2} + C \\
&= 2(e^x - 1)^{1/2} \left[ \frac{1}{3}(e^x - 1) + 1 \right] + C \\
&= 2\sqrt{e^x - 1} \left[ \frac{e^x - 1 + 3}{3} \right] + C \\
&= \boxed{\frac{2}{3}(e^x + 2)\sqrt{e^x - 1} + C}
\end{align*}

Question B.2 (a)
(Max Marks: 5)
Evaluate the integral sin2(x)cos5(x)dx \int \sin^2(x) \cos^5(x) dx .

trig identities
Integrals: u-substitution

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Identify the Strategy for Powers of Sine and Cosine


We are integrating sinm(x)cosn(x)dx \int \sin^m(x) \cos^n(x) dx .
In this case, m=2 m=2 (even) and n=5 n=5 (odd).
When the power of cosine is odd and positive (like cos5(x) \cos^5(x) ), we save one cosine factor to be part of du du , and convert the remaining even power of cosines into sines using the Pythagorean identity cos2(x)=1sin2(x) \cos^2(x) = 1 - \sin^2(x) . Then we perform a u-substitution with u=sin(x) u = \sin(x) .
This is often called the odd power strategy for cosine.


Step 2: Rewrite the Integrand


We have cos5(x) \cos^5(x) . We save one cos(x) \cos(x) factor:
cos5(x)=cos4(x)cos(x) \cos^5(x) = \cos^4(x) \cos(x)
Now, convert cos4(x) \cos^4(x) to an expression involving sines:
cos4(x)=(cos2(x))2=(1sin2(x))2 \cos^4(x) = (\cos^2(x))^2 = (1 - \sin^2(x))^2
So the integrand becomes:
sin2(x)cos5(x)=sin2(x)(1sin2(x))2cos(x) \sin^2(x) \cos^5(x) = \sin^2(x) (1 - \sin^2(x))^2 \cos(x)
The integral is now:
I=sin2(x)(1sin2(x))2cos(x)dx I = \int \sin^2(x) (1 - \sin^2(x))^2 \cos(x) dx


Step 3: Perform u-Substitution


Let u=sin(x) u = \sin(x) .
Then the derivative is dudx=cos(x) \frac{du}{dx} = \cos(x) , so du=cos(x)dx du = \cos(x) dx .
Substitute u u and du du into the integral:
I=u2(1u2)2du I = \int u^2 (1 - u^2)^2 du


Step 4: Expand and Integrate


Expand the term (1u2)2 (1 - u^2)^2 :
(1u2)2=122(1)(u2)+(u2)2=12u2+u4 (1 - u^2)^2 = 1^2 - 2(1)(u^2) + (u^2)^2 = 1 - 2u^2 + u^4
Now multiply by u2 u^2 :
u2(12u2+u4)=u22u4+u6 u^2 (1 - 2u^2 + u^4) = u^2 - 2u^4 + u^6
So the integral becomes:
I=(u22u4+u6)du I = \int (u^2 - 2u^4 + u^6) du
Integrate term by term using the power rule for antiderivatives:
I=u332u55+u77+C I = \frac{u^3}{3} - 2\frac{u^5}{5} + \frac{u^7}{7} + C , where C C is the constant of integration.


Step 5: Substitute Back to the Original Variable x


Replace u u with sin(x) \sin(x) :
I=sin3(x)32sin5(x)5+sin7(x)7+C I = \frac{\sin^3(x)}{3} - \frac{2\sin^5(x)}{5} + \frac{\sin^7(x)}{7} + C



I=sin2(x)cos5(x)dx=sin2(x)cos4(x)cos(x)dx=sin2(x)(cos2(x))2cos(x)dx=sin2(x)(1sin2(x))2cos(x)dxLet u=sin(x),du=cos(x)dxI=u2(1u2)2du=u2(12u2+u4)du=(u22u4+u6)du=u332u55+u77+C=sin3(x)32sin5(x)5+sin7(x)7+C
\begin{align*}
I &= \int \sin^2(x) \cos^5(x) dx \\
&= \int \sin^2(x) \cos^4(x) \cos(x) dx \\
&= \int \sin^2(x) (\cos^2(x))^2 \cos(x) dx \\
&= \int \sin^2(x) (1 - \sin^2(x))^2 \cos(x) dx \\
\text{Let } u &= \sin(x), \quad du = \cos(x) dx \\
I &= \int u^2 (1 - u^2)^2 du \\
&= \int u^2 (1 - 2u^2 + u^4) du \\
&= \int (u^2 - 2u^4 + u^6) du \\
&= \frac{u^3}{3} - \frac{2u^5}{5} + \frac{u^7}{7} + C \\
&= \boxed{\frac{\sin^3(x)}{3} - \frac{2\sin^5(x)}{5} + \frac{\sin^7(x)}{7} + C}
\end{align*}

Access Restricted - Please Unlock Unlock Now

I=sin2(x)cos5(x)dx=sin2(x)cos4(x)cos(x)dx=sin2(x)(cos2(x))2cos(x)dx=sin2(x)(1sin2(x))2cos(x)dxLet u=sin(x),du=cos(x)dxI=u2(1u2)2du=u2(12u2+u4)du=(u22u4+u6)du=u332u55+u77+C=sin3(x)32sin5(x)5+sin7(x)7+C
\begin{align*}
I &= \int \sin^2(x) \cos^5(x) dx \\
&= \int \sin^2(x) \cos^4(x) \cos(x) dx \\
&= \int \sin^2(x) (\cos^2(x))^2 \cos(x) dx \\
&= \int \sin^2(x) (1 - \sin^2(x))^2 \cos(x) dx \\
\text{Let } u &= \sin(x), \quad du = \cos(x) dx \\
I &= \int u^2 (1 - u^2)^2 du \\
&= \int u^2 (1 - 2u^2 + u^4) du \\
&= \int (u^2 - 2u^4 + u^6) du \\
&= \frac{u^3}{3} - \frac{2u^5}{5} + \frac{u^7}{7} + C \\
&= \boxed{\frac{\sin^3(x)}{3} - \frac{2\sin^5(x)}{5} + \frac{\sin^7(x)}{7} + C}
\end{align*}

Question B.2 (a)
(Max Marks: 5)
Evaluate the integral 1x24x2dx \int \frac{1}{x^2\sqrt{4-x^2}} dx .

Integrals: Trig Substitution
trig identities

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Identify the Form and Choose the Substitution


The integrand contains the term 4x2 \sqrt{4-x^2} . This is of the form a2x2 \sqrt{a^2 - x^2} , where a=2 a=2 .
For expressions involving a2x2 \sqrt{a^2 - x^2} , the standard trigonometric substitution is x=asin(θ) x = a\sin(\theta) .
In our case, let x=2sin(θ) x = 2\sin(\theta) .
We assume π2θπ2 -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} so that sin(θ) \sin(\theta) covers the range for x x values that make 4x20 4-x^2 \ge 0 (i.e., 2x2 -2 \le x \le 2 ) and cos(θ)0 \cos(\theta) \ge 0 .

Now, find dx dx :
The derivative of x=2sin(θ) x = 2\sin(\theta) with respect to θ \theta is dxdθ=2cos(θ) \frac{dx}{d\theta} = 2\cos(\theta) .
So, dx=2cos(θ)dθ dx = 2\cos(\theta) d\theta .


Step 2: Substitute into the Integral


We need to replace all parts of the integral with expressions in terms of θ \theta :
1. x2=(2sin(θ))2=4sin2(θ) x^2 = (2\sin(\theta))^2 = 4\sin^2(\theta) .
2. 4x2=4(2sin(θ))2=44sin2(θ) \sqrt{4-x^2} = \sqrt{4 - (2\sin(\theta))^2} = \sqrt{4 - 4\sin^2(\theta)}
Using the Pythagorean identity sin2(θ)+cos2(θ)=1 \sin^2(\theta) + \cos^2(\theta) = 1 , we have 1sin2(θ)=cos2(θ) 1 - \sin^2(\theta) = \cos^2(\theta) .
So, 4(1sin2(θ))=4cos2(θ)=2cos(θ) \sqrt{4(1 - \sin^2(\theta))} = \sqrt{4\cos^2(\theta)} = 2|\cos(\theta)| .
Since we chose π2θπ2 -\frac{\pi}{2} \le \theta \le \frac{\pi}{2} , cos(θ)0 \cos(\theta) \ge 0 , so 2cos(θ)=2cos(θ) 2|\cos(\theta)| = 2\cos(\theta) .
3. dx=2cos(θ)dθ dx = 2\cos(\theta) d\theta .

Substitute these into the integral:
I=1(4sin2(θ))(2cos(θ))(2cos(θ)dθ) I = \int \frac{1}{(4\sin^2(\theta))(2\cos(\theta))} (2\cos(\theta) d\theta)


Step 3: Simplify and Integrate with Respect to θ \theta


Simplify the expression:
I=2cos(θ)8sin2(θ)cos(θ)dθ=14sin2(θ)dθ I = \int \frac{2\cos(\theta)}{8\sin^2(\theta)\cos(\theta)} d\theta = \int \frac{1}{4\sin^2(\theta)} d\theta
I=141sin2(θ)dθ I = \frac{1}{4} \int \frac{1}{\sin^2(\theta)} d\theta
Since 1sin(θ)=csc(θ) \frac{1}{\sin(\theta)} = \csc(\theta) , we have 1sin2(θ)=csc2(θ) \frac{1}{\sin^2(\theta)} = \csc^2(\theta) .
I=14csc2(θ)dθ I = \frac{1}{4} \int \csc^2(\theta) d\theta
The antiderivative of csc2(θ) \csc^2(\theta) is cot(θ) -\cot(\theta) .
I=14(cot(θ))+C=14cot(θ)+C I = \frac{1}{4} (-\cot(\theta)) + C = -\frac{1}{4}\cot(\theta) + C , where C C is the constant of integration.


Step 4: Substitute Back to the Original Variable x


We need to express cot(θ) \cot(\theta) in terms of x x . Our substitution was x=2sin(θ) x = 2\sin(\theta) , so sin(θ)=x2 \sin(\theta) = \frac{x}{2} .
We can draw a right triangle diagram where θ \theta is an angle, the side opposite θ \theta is x x , and the hypotenuse is 2 2 .
Using the Pythagorean theorem, the adjacent side is 22x2=4x2 \sqrt{2^2 - x^2} = \sqrt{4 - x^2} .

Now, cot(θ)=adjacentopposite=4x2x \cot(\theta) = \frac{\text{adjacent}}{\text{opposite}} = \frac{\sqrt{4 - x^2}}{x} .
Substitute this back into the expression for I I :
I=14(4x2x)+C=4x24x+C I = -\frac{1}{4} \left( \frac{\sqrt{4 - x^2}}{x} \right) + C = -\frac{\sqrt{4 - x^2}}{4x} + C .



I=1x24x2dxLet x=2sin(θ),dx=2cos(θ)dθ4x2=44sin2(θ)=4cos2(θ)=2cos(θ)x2=4sin2(θ)I=14sin2(θ)2cos(θ)(2cos(θ)dθ)=14sin2(θ)dθ=14csc2(θ)dθ=14(cot(θ))+C=14cot(θ)+CSince sin(θ)=x2, (opp = x, hyp = 2, adj = 4x2)cot(θ)=4x2xI=14(4x2x)+C=4x24x+C
\begin{align*}
I &= \int \frac{1}{x^2\sqrt{4-x^2}} dx \\
\text{Let } x &= 2\sin(\theta), \quad dx = 2\cos(\theta) d\theta \\
\sqrt{4-x^2} &= \sqrt{4-4\sin^2(\theta)} = \sqrt{4\cos^2(\theta)} = 2\cos(\theta) \\
x^2 &= 4\sin^2(\theta) \\
I &= \int \frac{1}{4\sin^2(\theta) \cdot 2\cos(\theta)} (2\cos(\theta) d\theta) \\
&= \int \frac{1}{4\sin^2(\theta)} d\theta \\
&= \frac{1}{4} \int \csc^2(\theta) d\theta \\
&= \frac{1}{4} (-\cot(\theta)) + C \\
&= -\frac{1}{4}\cot(\theta) + C \\
\text{Since } \sin(\theta) &= \frac{x}{2}, \text{ (opp = x, hyp = 2, adj = } \sqrt{4-x^2} \text{)} \\
\cot(\theta) &= \frac{\sqrt{4-x^2}}{x} \\
I &= -\frac{1}{4} \left(\frac{\sqrt{4-x^2}}{x}\right) + C \\
&= \boxed{-\frac{\sqrt{4-x^2}}{4x} + C}
\end{align*}

Access Restricted - Please Unlock Unlock Now

I=1x24x2dxLet x=2sin(θ),dx=2cos(θ)dθ4x2=44sin2(θ)=4cos2(θ)=2cos(θ)x2=4sin2(θ)I=14sin2(θ)2cos(θ)(2cos(θ)dθ)=14sin2(θ)dθ=14csc2(θ)dθ=14(cot(θ))+C=14cot(θ)+CSince sin(θ)=x2, (opp = x, hyp = 2, adj = 4x2)cot(θ)=4x2xI=14(4x2x)+C=4x24x+C
\begin{align*}
I &= \int \frac{1}{x^2\sqrt{4-x^2}} dx \\
\text{Let } x &= 2\sin(\theta), \quad dx = 2\cos(\theta) d\theta \\
\sqrt{4-x^2} &= \sqrt{4-4\sin^2(\theta)} = \sqrt{4\cos^2(\theta)} = 2\cos(\theta) \\
x^2 &= 4\sin^2(\theta) \\
I &= \int \frac{1}{4\sin^2(\theta) \cdot 2\cos(\theta)} (2\cos(\theta) d\theta) \\
&= \int \frac{1}{4\sin^2(\theta)} d\theta \\
&= \frac{1}{4} \int \csc^2(\theta) d\theta \\
&= \frac{1}{4} (-\cot(\theta)) + C \\
&= -\frac{1}{4}\cot(\theta) + C \\
\text{Since } \sin(\theta) &= \frac{x}{2}, \text{ (opp = x, hyp = 2, adj = } \sqrt{4-x^2} \text{)} \\
\cot(\theta) &= \frac{\sqrt{4-x^2}}{x} \\
I &= -\frac{1}{4} \left(\frac{\sqrt{4-x^2}}{x}\right) + C \\
&= \boxed{-\frac{\sqrt{4-x^2}}{4x} + C}
\end{align*}

Question B.3
(Max Marks: 10)
Evaluate the integral x3+4x2+6x+9x3+x2+4x+4dx \int \frac{x^3 + 4x^2 + 6x + 9}{x^3 + x^2 + 4x + 4} dx .

You may use the fact that x3+x2+4x+4=(x+1)(x2+4) x^3 + x^2 + 4x + 4 = (x+1)(x^2+4) .

Integrals: Partial Fractions
integrals
Polynomial Long Division

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Perform Polynomial Long Division


Since the degree of the numerator (3) is equal to the degree of the denominator (3) in this rational function, our first step is polynomial long division.

1x3+x2+4x+4)x3+4x2+6x+9(x3+x2+4x+4)3x2+2x+5
\begin{array}{r} 1 \\ x^3+x^2+4x+4 \overline{) x^3+4x^2+6x+9} \\ -(x^3+x^2+4x+4) \\ \hline 3x^2+2x+5 \end{array}


This division shows that:
x3+4x2+6x+9x3+x2+4x+4=1+3x2+2x+5x3+x2+4x+4 \frac{x^3 + 4x^2 + 6x + 9}{x^3 + x^2 + 4x + 4} = 1 + \frac{3x^2 + 2x + 5}{x^3 + x^2 + 4x + 4}

Using the given factorization for the denominator, we can write this as:
=1+3x2+2x+5(x+1)(x2+4) = 1 + \frac{3x^2 + 2x + 5}{(x+1)(x^2+4)}


Step 2: Partial Fraction Decomposition of the Remainder


Next, we apply partial fraction decomposition to the remainder term:
3x2+2x+5(x+1)(x2+4) \frac{3x^2 + 2x + 5}{(x+1)(x^2+4)}

The denominator has a linear factor (x+1) (x+1) and an irreducible quadratic factor (x2+4) (x^2+4) .
The form of the decomposition will be:
3x2+2x+5(x+1)(x2+4)=Ax+1+Bx+Cx2+4 \frac{3x^2 + 2x + 5}{(x+1)(x^2+4)} = \frac{A}{x+1} + \frac{Bx+C}{x^2+4}

To solve for AA, BB, and CC, we multiply both sides by the common denominator (x+1)(x2+4) (x+1)(x^2+4) :
3x2+2x+5=A(x2+4)+(Bx+C)(x+1) 3x^2 + 2x + 5 = A(x^2+4) + (Bx+C)(x+1)

First, let's find A A by substituting x=1 x = -1 (the root of the linear factor):
3(1)2+2(1)+5=A((1)2+4)+(B(1)+C)(1+1) 3(-1)^2 + 2(-1) + 5 = A((-1)^2+4) + (B(-1)+C)(-1+1)
3(1)2+5=A(1+4)+0 3(1) - 2 + 5 = A(1+4) + 0
32+5=5A 3 - 2 + 5 = 5A
6=5A 6 = 5A
So, A=65 A = \frac{6}{5} .

Now, to find B B and C C , we expand the right side of the equation:
A(x2+4)+(Bx+C)(x+1)=Ax2+4A+Bx2+Bx+Cx+C A(x^2+4) + (Bx+C)(x+1) = Ax^2 + 4A + Bx^2 + Bx + Cx + C
Group terms by powers of x x :
=(A+B)x2+(B+C)x+(4A+C) = (A+B)x^2 + (B+C)x + (4A+C)

So, we have:
3x2+2x+5=(A+B)x2+(B+C)x+(4A+C) 3x^2 + 2x + 5 = (A+B)x^2 + (B+C)x + (4A+C)

Now, we equate the coefficients of corresponding powers of x x :

1. Coefficient of x2 x^2 :
A+B=3 A+B = 3
Since A=65 A = \frac{6}{5} , we substitute this value:
65+B=3 \frac{6}{5} + B = 3
B=365=15565 B = 3 - \frac{6}{5} = \frac{15}{5} - \frac{6}{5}
B=95 B = \frac{9}{5}

2. Constant term (coefficient of x0 x^0 ):
4A+C=5 4A+C = 5
Substitute A=65 A = \frac{6}{5} :
4(65)+C=5 4\left(\frac{6}{5}\right) + C = 5
245+C=5 \frac{24}{5} + C = 5
C=5245=255245 C = 5 - \frac{24}{5} = \frac{25}{5} - \frac{24}{5}
C=15 C = \frac{1}{5}

3. (Optional check) Coefficient of x x :
B+C=2 B+C = 2
Using our found values: 95+15=105=2 \frac{9}{5} + \frac{1}{5} = \frac{10}{5} = 2 . This matches, giving us confidence in our values for A,B,C A, B, C .

Therefore, the partial fraction decomposition is:
3x2+2x+5(x+1)(x2+4)=6/5x+1+(9/5)x+1/5x2+4 \frac{3x^2 + 2x + 5}{(x+1)(x^2+4)} = \frac{6/5}{x+1} + \frac{(9/5)x + 1/5}{x^2+4}


Step 3: Integrate the Result


Now we can integrate the full expression term by term:
I=(1+65(x+1)+95x+15x2+4)dx I = \int \left( 1 + \frac{6}{5(x+1)} + \frac{\frac{9}{5}x + \frac{1}{5}}{x^2+4} \right) dx

This can be split into simpler integrals:
I=1dx+65(x+1)dx+95x+15x2+4dx I = \int 1 dx + \int \frac{6}{5(x+1)} dx + \int \frac{\frac{9}{5}x + \frac{1}{5}}{x^2+4} dx
I=1dx+651x+1dx+159x+1x2+4dx I = \int 1 dx + \frac{6}{5} \int \frac{1}{x+1} dx + \frac{1}{5} \int \frac{9x+1}{x^2+4} dx

Let's further split the last integral:
I=1dx+651x+1dx+95xx2+4dx+151x2+4dx I = \int 1 dx + \frac{6}{5} \int \frac{1}{x+1} dx + \frac{9}{5} \int \frac{x}{x^2+4} dx + \frac{1}{5} \int \frac{1}{x^2+4} dx

Now, evaluate each integral:
1. 1dx=x \int 1 dx = x
2. 651x+1dx=65lnx+1 \frac{6}{5} \int \frac{1}{x+1} dx = \frac{6}{5} \ln|x+1| (This is a basic natural logarithm integral).
3. For 95xx2+4dx \frac{9}{5} \int \frac{x}{x^2+4} dx , we use u-substitution. Let u=x2+4 u = x^2+4 . Then du=2xdx du = 2x dx , which means xdx=12du x dx = \frac{1}{2}du .
The integral becomes 951u(12du)=9101udu=910lnu=910ln(x2+4) \frac{9}{5} \int \frac{1}{u} \left(\frac{1}{2}du\right) = \frac{9}{10} \int \frac{1}{u} du = \frac{9}{10} \ln|u| = \frac{9}{10} \ln(x^2+4) (since x2+4 x^2+4 is always positive, absolute value is not strictly necessary here).
4. For 151x2+4dx \frac{1}{5} \int \frac{1}{x^2+4} dx , we rewrite it as 151x2+22dx \frac{1}{5} \int \frac{1}{x^2+2^2} dx . This is in the form for an arctan integral, 1v2+a2dv=1aarctan(va) \int \frac{1}{v^2+a^2}dv = \frac{1}{a}\arctan(\frac{v}{a}) .
So, 1512arctan(x2)=110arctan(x2) \frac{1}{5} \cdot \frac{1}{2} \arctan\left(\frac{x}{2}\right) = \frac{1}{10} \arctan\left(\frac{x}{2}\right) .

Combining all these parts and adding the constant of integration C C :
I=x+65lnx+1+910ln(x2+4)+110arctan(x2)+C I = x + \frac{6}{5}\ln|x+1| + \frac{9}{10}\ln(x^2+4) + \frac{1}{10}\arctan\left(\frac{x}{2}\right) + C

For integrating rational functions, remember the sequence: 1. Check degrees for polynomial long division. 2. Factor the denominator completely. 3. Set up partial fraction decomposition based on factor types (linear, repeated linear, irreducible quadratic, repeated irreducible quadratic). 4. Integrate the resulting simpler fractions.


I=(1+6/5x+1+(9/5)x+1/5x2+4)dx=1dx+651x+1dx+95xx2+4dx+151x2+22dx=x+65lnx+1+9512ln(x2+4)+1512arctan(x2)+C=x+65lnx+1+910ln(x2+4)+110arctan(x2)+C
\begin{align*}
I &= \int \left( 1 + \frac{6/5}{x+1} + \frac{(9/5)x + 1/5}{x^2+4} \right) dx \\
&= \int 1 dx + \frac{6}{5}\int \frac{1}{x+1} dx + \frac{9}{5}\int \frac{x}{x^2+4} dx + \frac{1}{5}\int \frac{1}{x^2+2^2} dx \\
&= x + \frac{6}{5}\ln|x+1| + \frac{9}{5} \cdot \frac{1}{2}\ln(x^2+4) + \frac{1}{5} \cdot \frac{1}{2}\arctan\left(\frac{x}{2}\right) + C \\
&= \boxed{x + \frac{6}{5}\ln|x+1| + \frac{9}{10}\ln(x^2+4) + \frac{1}{10}\arctan\left(\frac{x}{2}\right) + C}
\end{align*}

Access Restricted - Please Unlock Unlock Now

I=(1+6/5x+1+(9/5)x+1/5x2+4)dx=1dx+651x+1dx+95xx2+4dx+151x2+22dx=x+65lnx+1+9512ln(x2+4)+1512arctan(x2)+C=x+65lnx+1+910ln(x2+4)+110arctan(x2)+C
\begin{align*}
I &= \int \left( 1 + \frac{6/5}{x+1} + \frac{(9/5)x + 1/5}{x^2+4} \right) dx \\
&= \int 1 dx + \frac{6}{5}\int \frac{1}{x+1} dx + \frac{9}{5}\int \frac{x}{x^2+4} dx + \frac{1}{5}\int \frac{1}{x^2+2^2} dx \\
&= x + \frac{6}{5}\ln|x+1| + \frac{9}{5} \cdot \frac{1}{2}\ln(x^2+4) + \frac{1}{5} \cdot \frac{1}{2}\arctan\left(\frac{x}{2}\right) + C \\
&= \boxed{x + \frac{6}{5}\ln|x+1| + \frac{9}{10}\ln(x^2+4) + \frac{1}{10}\arctan\left(\frac{x}{2}\right) + C}
\end{align*}

Question B.4 (a)
(Max Marks: 5)
For the improper integral below, either find its value or show that it diverges:
1x5ex3dx \int_1^\infty x^5 e^{-x^3} dx
integrals
Integrals: u-substitution
Integrals: Integration By Parts

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Definition of the Improper Integral


This is an improper integral of Type 1 because its upper limit of integration is infinity.
We define it as a limit:
1x5ex3dx=limb1bx5ex3dx \int_1^\infty x^5 e^{-x^3} dx = \lim_{b\to\infty} \int_1^b x^5 e^{-x^3} dx

Step 2: Evaluate the Indefinite Integral


First, let's find the indefinite integral Iindef=x5ex3dx I_{indef} = \int x^5 e^{-x^3} dx .
We can rewrite x5 x^5 as x3x2 x^3 \cdot x^2 :
Iindef=x3x2ex3dx I_{indef} = \int x^3 \cdot x^2 e^{-x^3} dx

Now, we use u-substitution.
Let w=x3 w = x^3 .
Then the derivative is dwdx=3x2 \frac{dw}{dx} = 3x^2 , so dw=3x2dx dw = 3x^2 dx .
This gives us x2dx=13dw x^2 dx = \frac{1}{3} dw .

Substitute these into the integral Iindef I_{indef} :
Iindef=wew(13dw)=13wewdw I_{indef} = \int w e^{-w} \left(\frac{1}{3} dw\right) = \frac{1}{3} \int w e^{-w} dw

The integral wewdw \int w e^{-w} dw requires integration by parts: updvp=upvpvpdup \int u_{p} dv_{p} = u_{p}v_{p} - \int v_{p} du_{p} .
Let up=w u_{p} = w and dvp=ewdw dv_{p} = e^{-w} dw .
Then dup=dw du_{p} = dw and vp=ewdw=ew v_{p} = \int e^{-w} dw = -e^{-w} .

So, wewdw=w(ew)(ew)dw \int w e^{-w} dw = w(-e^{-w}) - \int (-e^{-w}) dw
=wew+ewdw = -w e^{-w} + \int e^{-w} dw
=wewew = -w e^{-w} - e^{-w}
=ew(w+1) = -e^{-w}(w+1)

Substitute this back into the expression for Iindef I_{indef} :
Iindef=13(ew(w+1))=13ew(w+1) I_{indef} = \frac{1}{3} \left( -e^{-w}(w+1) \right) = -\frac{1}{3} e^{-w}(w+1)

Now, substitute back w=x3 w = x^3 :
Iindef=13ex3(x3+1) I_{indef} = -\frac{1}{3} e^{-x^3}(x^3+1)

Step 3: Evaluate the Definite Integral


Now we evaluate 1bx5ex3dx \int_1^b x^5 e^{-x^3} dx using the antiderivative found:
[13ex3(x3+1)]1b \left[ -\frac{1}{3} e^{-x^3}(x^3+1) \right]_1^b
This is evaluated as:
(13eb3(b3+1))(13e(1)3((1)3+1)) \left( -\frac{1}{3} e^{-b^3}(b^3+1) \right) - \left( -\frac{1}{3} e^{-(1)^3}((1)^3+1) \right)
=b3+13eb3(13e1(1+1)) = -\frac{b^3+1}{3e^{b^3}} - \left( -\frac{1}{3} e^{-1}(1+1) \right)
=b3+13eb3+23e = -\frac{b^3+1}{3e^{b^3}} + \frac{2}{3e}

Step 4: Evaluate the Limit (Without L'Hôpital's Rule)


Finally, we take the limit as b b \to \infty :
L=limb(b3+13eb3+23e) L = \lim_{b\to\infty} \left( -\frac{b^3+1}{3e^{b^3}} + \frac{2}{3e} \right)

We need to evaluate limbb3+13eb3 \lim_{b\to\infty} \frac{b^3+1}{3e^{b^3}} . Let y=b3 y = b^3 . As b b \to \infty , y y \to \infty .
The expression becomes y+13ey=13(yey+1ey) \frac{y+1}{3e^y} = \frac{1}{3} \left( \frac{y}{e^y} + \frac{1}{e^y} \right) .

We know that limy1ey=0 \lim_{y\to\infty} \frac{1}{e^y} = 0 .
For the term yey \frac{y}{e^y} , we can use the fact that the exponential function ey e^y grows much faster than any polynomial in y y .

So, limbb3+13eb3=13(0+0)=0 \lim_{b\to\infty} \frac{b^3+1}{3e^{b^3}} = \frac{1}{3} (0 + 0) = 0 .

Therefore, the original limit L L is:
L=0+23e=23e L = -0 + \frac{2}{3e} = \frac{2}{3e}

Since the limit is a finite number, the integral converges to this value.

To show that a polynomial divided by an exponential (like P(y)ey \frac{P(y)}{e^y} ) goes to zero as yy \to \infty without L'Hôpital's Rule, you can use the Squeeze Theorem by noting that eye^y grows faster than any power of yy. For example, ey>yk/k!e^y > y^k/k! for any kk.


1x5ex3dx=limb1bx5ex3dxConsider the indefinite integral: Iindef=x5ex3dxLet w=x3, then dw=3x2dx, so x2dx=13dwIindef=x3ex3x2dx=wew(13dw)=13wewdwUsing Integration by Parts for wewdw:Let up=wdvp=ewdwThen dup=dwvp=ewwewdw=wew(ew)dw=wew+ewdw=wewew=ew(w+1)So, Iindef=13(ew(w+1))=13ex3(x3+1)Now, evaluate the definite integral part:1bx5ex3dx=[13ex3(x3+1)]1b=(13eb3(b3+1))(13e1(13+1))=b3+13eb3+23eFinally, evaluate the limit:limb(b3+13eb3+23e)Since limbb3+13eb3=0(exponential grows faster than polynomial)The limit is 0+23e=23e
\begin{align*}
\int_1^\infty x^5 e^{-x^3} dx &= \lim_{b\to\infty} \int_1^b x^5 e^{-x^3} dx \\
\\
\text{Consider the indefinite integral: } &I_{indef} = \int x^5 e^{-x^3} dx \\
\text{Let } w = x^3 \text{, then } dw &= 3x^2 dx \text{, so } x^2 dx = \frac{1}{3}dw \\
I_{indef} &= \int x^3 \cdot e^{-x^3} \cdot x^2 dx \\
&= \int w e^{-w} \left(\frac{1}{3}dw\right) = \frac{1}{3} \int w e^{-w} dw \\
\\
\text{Using Integration by Parts for } \int w e^{-w} dw: \\
\text{Let } u_p = w \text{, } &dv_p = e^{-w}dw \\
\text{Then } du_p = dw \text{, } &v_p = -e^{-w} \\
\int w e^{-w} dw &= -we^{-w} - \int (-e^{-w}) dw \\
&= -we^{-w} + \int e^{-w} dw \\
&= -we^{-w} - e^{-w} = -e^{-w}(w+1) \\
\\
\text{So, } I_{indef} &= \frac{1}{3} \left( -e^{-w}(w+1) \right) \\
&= -\frac{1}{3}e^{-x^3}(x^3+1) \\
\\
\text{Now, evaluate the definite integral part:} \\
\int_1^b x^5 e^{-x^3} dx &= \left[ -\frac{1}{3}e^{-x^3}(x^3+1) \right]_1^b \\
&= \left( -\frac{1}{3}e^{-b^3}(b^3+1) \right) - \left( -\frac{1}{3}e^{-1}(1^3+1) \right) \\
&= -\frac{b^3+1}{3e^{b^3}} + \frac{2}{3e} \\
\\
\text{Finally, evaluate the limit:} \\
\lim_{b\to\infty} \left( -\frac{b^3+1}{3e^{b^3}} + \frac{2}{3e} \right) \\
\text{Since } \lim_{b\to\infty} \frac{b^3+1}{3e^{b^3}} &= 0 \quad (\text{exponential grows faster than polynomial}) \\
\text{The limit is } 0 + \frac{2}{3e} &= \boxed{\frac{2}{3e}}
\end{align*}

Access Restricted - Please Unlock Unlock Now

1x5ex3dx=limb1bx5ex3dxConsider the indefinite integral: Iindef=x5ex3dxLet w=x3, then dw=3x2dx, so x2dx=13dwIindef=x3ex3x2dx=wew(13dw)=13wewdwUsing Integration by Parts for wewdw:Let up=wdvp=ewdwThen dup=dwvp=ewwewdw=wew(ew)dw=wew+ewdw=wewew=ew(w+1)So, Iindef=13(ew(w+1))=13ex3(x3+1)Now, evaluate the definite integral part:1bx5ex3dx=[13ex3(x3+1)]1b=(13eb3(b3+1))(13e1(13+1))=b3+13eb3+23eFinally, evaluate the limit:limb(b3+13eb3+23e)Since limbb3+13eb3=0(exponential grows faster than polynomial)The limit is 0+23e=23e
\begin{align*}
\int_1^\infty x^5 e^{-x^3} dx &= \lim_{b\to\infty} \int_1^b x^5 e^{-x^3} dx \\
\\
\text{Consider the indefinite integral: } &I_{indef} = \int x^5 e^{-x^3} dx \\
\text{Let } w = x^3 \text{, then } dw &= 3x^2 dx \text{, so } x^2 dx = \frac{1}{3}dw \\
I_{indef} &= \int x^3 \cdot e^{-x^3} \cdot x^2 dx \\
&= \int w e^{-w} \left(\frac{1}{3}dw\right) = \frac{1}{3} \int w e^{-w} dw \\
\\
\text{Using Integration by Parts for } \int w e^{-w} dw: \\
\text{Let } u_p = w \text{, } &dv_p = e^{-w}dw \\
\text{Then } du_p = dw \text{, } &v_p = -e^{-w} \\
\int w e^{-w} dw &= -we^{-w} - \int (-e^{-w}) dw \\
&= -we^{-w} + \int e^{-w} dw \\
&= -we^{-w} - e^{-w} = -e^{-w}(w+1) \\
\\
\text{So, } I_{indef} &= \frac{1}{3} \left( -e^{-w}(w+1) \right) \\
&= -\frac{1}{3}e^{-x^3}(x^3+1) \\
\\
\text{Now, evaluate the definite integral part:} \\
\int_1^b x^5 e^{-x^3} dx &= \left[ -\frac{1}{3}e^{-x^3}(x^3+1) \right]_1^b \\
&= \left( -\frac{1}{3}e^{-b^3}(b^3+1) \right) - \left( -\frac{1}{3}e^{-1}(1^3+1) \right) \\
&= -\frac{b^3+1}{3e^{b^3}} + \frac{2}{3e} \\
\\
\text{Finally, evaluate the limit:} \\
\lim_{b\to\infty} \left( -\frac{b^3+1}{3e^{b^3}} + \frac{2}{3e} \right) \\
\text{Since } \lim_{b\to\infty} \frac{b^3+1}{3e^{b^3}} &= 0 \quad (\text{exponential grows faster than polynomial}) \\
\text{The limit is } 0 + \frac{2}{3e} &= \boxed{\frac{2}{3e}}
\end{align*}

Question B.4 (b)
(Max Marks: 5)
For the improper integral below, either find its value or show that it diverges:
121x1dx \int_1^2 \frac{1}{x-1} dx

integrals
Integrals: Improper

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Identify the Discontinuity


The integrand is f(x)=1x1 f(x) = \frac{1}{x-1} .
This function has an infinite discontinuity (a vertical asymptote) when the denominator is zero, i.e., when x1=0 x-1 = 0 , which means x=1 x = 1 .
Since this discontinuity occurs at the lower limit of integration, this is a Type 2 improper integral.

Step 2: Write the Improper Integral as a Limit


To evaluate this improper integral, we replace the problematic lower limit with a variable (say, c c ) and take the limit as c c approaches 1 1 from the right side (since our interval is [1,2] [1, 2] , we approach 1 from within the interval):

121x1dx=limc1+c21x1dx \int_1^2 \frac{1}{x-1} dx = \lim_{c\to 1^+} \int_c^2 \frac{1}{x-1} dx

Step 3: Evaluate the Definite Integral


First, we find the antiderivative of 1x1 \frac{1}{x-1} .
Let u=x1 u = x-1 , then du=dx du = dx .
So, 1x1dx=1udu=lnu=lnx1 \int \frac{1}{x-1} dx = \int \frac{1}{u} du = \ln|u| = \ln|x-1| .

Now, evaluate the definite integral from c c to 2 2 :
c21x1dx=[lnx1]c2 \int_c^2 \frac{1}{x-1} dx = \left[ \ln|x-1| \right]_c^2
=ln21lnc1 = \ln|2-1| - \ln|c-1|
=ln(1)lnc1 = \ln(1) - \ln|c-1|
Since ln(1)=0 \ln(1) = 0 , this simplifies to:
=lnc1 = -\ln|c-1|

Since c1+ c \to 1^+ , c c is slightly greater than 1 1 , so c1 c-1 is a small positive number. Thus, c1=c1 |c-1| = c-1 .
So, the definite integral is ln(c1) -\ln(c-1) .

Step 4: Evaluate the Limit


Now we substitute this back into our limit expression:
L=limc1+(ln(c1)) L = \lim_{c\to 1^+} \left( -\ln(c-1) \right)

Let y=c1 y = c-1 . As c1+ c \to 1^+ , y0+ y \to 0^+ .
The limit becomes:
L=limy0+(ln(y)) L = \lim_{y\to 0^+} (-\ln(y))

We know that limy0+ln(y)= \lim_{y\to 0^+} \ln(y) = -\infty .
Therefore:
L=()=+ L = -(-\infty) = +\infty

When evaluating improper integrals with discontinuities, always rewrite them as a limit first. If the limit is \infty , -\infty , or does not exist, the integral diverges. If the limit is a finite number, the integral converges to that number.

Since the limit is \infty , the integral diverges.



121x1dx=limc1+c21x1dxFirst, find the antiderivative:1x1dx=lnx1Evaluate the definite integral part:c21x1dx=[lnx1]c2=ln21lnc1=ln(1)lnc1=0lnc1=lnc1Since c1+,c1>0, so c1=c1:=ln(c1)Now, evaluate the limit:limc1+(ln(c1))Let y=c1. As c1+,y0+.limy0+(ln(y))=()=+Therefore, the integral diverges.
\begin{align*}
\int_1^2 \frac{1}{x-1} dx &= \lim_{c\to 1^+} \int_c^2 \frac{1}{x-1} dx \\
\\
\text{First, find the antiderivative:} \\
\int \frac{1}{x-1} dx &= \ln|x-1| \\
\\
\text{Evaluate the definite integral part:} \\
\int_c^2 \frac{1}{x-1} dx &= \left[ \ln|x-1| \right]_c^2 \\
&= \ln|2-1| - \ln|c-1| \\
&= \ln(1) - \ln|c-1| \\
&= 0 - \ln|c-1| \\
&= -\ln|c-1| \\
\\
\text{Since } c \to 1^+, c-1 > 0, \text{ so } |c-1| = c-1: \\
&= -\ln(c-1) \\
\\
\text{Now, evaluate the limit:} \\
\lim_{c\to 1^+} \left( -\ln(c-1) \right) \\
\text{Let } y = c-1. \text{ As } c \to 1^+, y \to 0^+. \\
\lim_{y\to 0^+} (-\ln(y)) &= -(-\infty) \\
&= +\infty \\
\\
\text{Therefore, the integral } &\boxed{\text{diverges}}.
\end{align*}

Access Restricted - Please Unlock Unlock Now

121x1dx=limc1+c21x1dxFirst, find the antiderivative:1x1dx=lnx1Evaluate the definite integral part:c21x1dx=[lnx1]c2=ln21lnc1=ln(1)lnc1=0lnc1=lnc1Since c1+,c1>0, so c1=c1:=ln(c1)Now, evaluate the limit:limc1+(ln(c1))Let y=c1. As c1+,y0+.limy0+(ln(y))=()=+Therefore, the integral diverges.
\begin{align*}
\int_1^2 \frac{1}{x-1} dx &= \lim_{c\to 1^+} \int_c^2 \frac{1}{x-1} dx \\
\\
\text{First, find the antiderivative:} \\
\int \frac{1}{x-1} dx &= \ln|x-1| \\
\\
\text{Evaluate the definite integral part:} \\
\int_c^2 \frac{1}{x-1} dx &= \left[ \ln|x-1| \right]_c^2 \\
&= \ln|2-1| - \ln|c-1| \\
&= \ln(1) - \ln|c-1| \\
&= 0 - \ln|c-1| \\
&= -\ln|c-1| \\
\\
\text{Since } c \to 1^+, c-1 > 0, \text{ so } |c-1| = c-1: \\
&= -\ln(c-1) \\
\\
\text{Now, evaluate the limit:} \\
\lim_{c\to 1^+} \left( -\ln(c-1) \right) \\
\text{Let } y = c-1. \text{ As } c \to 1^+, y \to 0^+. \\
\lim_{y\to 0^+} (-\ln(y)) &= -(-\infty) \\
&= +\infty \\
\\
\text{Therefore, the integral } &\boxed{\text{diverges}}.
\end{align*}

Question B.5
(Max Marks: 10)
Find the area enclosed by the curves y=x2 y = x^2 and x=y2 x = y^2 .

integrals

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Express Both Curves as y = f(x)


The first curve is already in this form: y1=x2 y_1 = x^2 .
The second curve is x=y2 x = y^2 . To express y y in terms of x x , we take the square root: y=±x y = \pm \sqrt{x} .
Since y=x2 y = x^2 implies y0 y \ge 0 , the relevant part of y=±x y = \pm \sqrt{x} that can enclose an area with y=x2 y=x^2 is y2=x y_2 = \sqrt{x} (for x0 x \ge 0 ).
So, we are looking for the area between y=x2 y = x^2 and y=x y = \sqrt{x} .

Step 2: Find the Intersection Points


To find the intersection points, we set the expressions for y y equal to each other:
x2=x x^2 = \sqrt{x}
Square both sides (note: ensure x0 x \ge 0 for x \sqrt{x} to be real):
(x2)2=(x)2 (x^2)^2 = (\sqrt{x})^2
x4=x x^4 = x
x4x=0 x^4 - x = 0
Factor out x x :
x(x31)=0 x(x^3 - 1) = 0
This gives x=0 x = 0 or x31=0 x^3 - 1 = 0 .
x3=1    x=1 x^3 = 1 \implies x = 1 .

So, the curves intersect at x=0 x = 0 and x=1 x = 1 .
When x=0 x = 0 , y=02=0 y = 0^2 = 0 . Point: (0,0) (0,0) .
When x=1 x = 1 , y=12=1 y = 1^2 = 1 . Point: (1,1) (1,1) .
These are our limits of integration for x x .

Step 3: Determine the Upper and Lower Functions


In the interval [0,1] [0, 1] , we need to determine which function has greater y y -values (the upper function) and which has smaller y y -values (the lower function).
Let's pick a test point within the interval, for example, x=14 x = \frac{1}{4} .
For y1=x2 y_1 = x^2 : y1=(14)2=116 y_1 = \left(\frac{1}{4}\right)^2 = \frac{1}{16} .
For y2=x y_2 = \sqrt{x} : y2=14=12 y_2 = \sqrt{\frac{1}{4}} = \frac{1}{2} .
Since 12>116 \frac{1}{2} > \frac{1}{16} , the function y2=x y_2 = \sqrt{x} is the upper function, and y1=x2 y_1 = x^2 is the lower function on the interval [0,1] [0, 1] .

Step 4: Set Up the Definite Integral for the Area


The area A A between two curves yupper(x) y_{upper}(x) and ylower(x) y_{lower}(x) from x=a x = a to x=b x = b is given by:
A=ab(yupper(x)ylower(x))dx A = \int_a^b (y_{upper}(x) - y_{lower}(x)) dx
In our case, a=0 a=0 , b=1 b=1 , yupper(x)=x y_{upper}(x) = \sqrt{x} , and ylower(x)=x2 y_{lower}(x) = x^2 .
So, A=01(xx2)dx A = \int_0^1 (\sqrt{x} - x^2) dx .
We can rewrite x \sqrt{x} as x1/2 x^{1/2} .
A=01(x1/2x2)dx A = \int_0^1 (x^{1/2} - x^2) dx

Step 5: Evaluate the Integral


Now, we find the antiderivative using the power rule for integration (xndx=xn+1n+1 \int x^n dx = \frac{x^{n+1}}{n+1} ):
x1/2dx=x1/2+11/2+1=x3/23/2=23x3/2 \int x^{1/2} dx = \frac{x^{1/2 + 1}}{1/2 + 1} = \frac{x^{3/2}}{3/2} = \frac{2}{3}x^{3/2}
x2dx=x33 \int x^2 dx = \frac{x^3}{3}
So, the definite integral is:
A=[23x3/213x3]01 A = \left[ \frac{2}{3}x^{3/2} - \frac{1}{3}x^3 \right]_0^1
Evaluate at the upper limit x=1 x=1 :
23(1)3/213(1)3=23(1)13(1)=2313=13 \frac{2}{3}(1)^{3/2} - \frac{1}{3}(1)^3 = \frac{2}{3}(1) - \frac{1}{3}(1) = \frac{2}{3} - \frac{1}{3} = \frac{1}{3}
Evaluate at the lower limit x=0 x=0 :
23(0)3/213(0)3=00=0 \frac{2}{3}(0)^{3/2} - \frac{1}{3}(0)^3 = 0 - 0 = 0
Therefore, the area is:
A=130=13 A = \frac{1}{3} - 0 = \frac{1}{3}



A=01(xx2)dx=01(x1/2x2)dx=[x1/2+11/2+1x2+12+1]01=[x3/23/2x33]01=[23x3/213x3]01=(23(1)3/213(1)3)(23(0)3/213(0)3)=(2313)(00)=130=13
\begin{align*}
A &= \int_0^1 (\sqrt{x} - x^2) dx \\
&= \int_0^1 (x^{1/2} - x^2) dx \\
&= \left[ \frac{x^{1/2 + 1}}{1/2 + 1} - \frac{x^{2+1}}{2+1} \right]_0^1 \\
&= \left[ \frac{x^{3/2}}{3/2} - \frac{x^3}{3} \right]_0^1 \\
&= \left[ \frac{2}{3}x^{3/2} - \frac{1}{3}x^3 \right]_0^1 \\
&= \left( \frac{2}{3}(1)^{3/2} - \frac{1}{3}(1)^3 \right) - \left( \frac{2}{3}(0)^{3/2} - \frac{1}{3}(0)^3 \right) \\
&= \left( \frac{2}{3} - \frac{1}{3} \right) - (0 - 0) \\
&= \frac{1}{3} - 0 \\
&= \boxed{\frac{1}{3}}
\end{align*}

Access Restricted - Please Unlock Unlock Now


A=01(xx2)dx=01(x1/2x2)dx=[x1/2+11/2+1x2+12+1]01=[x3/23/2x33]01=[23x3/213x3]01=(23(1)3/213(1)3)(23(0)3/213(0)3)=(2313)(00)=130=13
\begin{align*}
A &= \int_0^1 (\sqrt{x} - x^2) dx \\
&= \int_0^1 (x^{1/2} - x^2) dx \\
&= \left[ \frac{x^{1/2 + 1}}{1/2 + 1} - \frac{x^{2+1}}{2+1} \right]_0^1 \\
&= \left[ \frac{x^{3/2}}{3/2} - \frac{x^3}{3} \right]_0^1 \\
&= \left[ \frac{2}{3}x^{3/2} - \frac{1}{3}x^3 \right]_0^1 \\
&= \left( \frac{2}{3}(1)^{3/2} - \frac{1}{3}(1)^3 \right) - \left( \frac{2}{3}(0)^{3/2} - \frac{1}{3}(0)^3 \right) \\
&= \left( \frac{2}{3} - \frac{1}{3} \right) - (0 - 0) \\
&= \frac{1}{3} - 0 \\
&= \boxed{\frac{1}{3}}
\end{align*}

Question B.6
(Max Marks: 10)
Let R be the region enclosed by the curves y=x y = x and y=x2 y = x^2 . Set up integrals for the volume obtained by rotating R about:
(a) the x-axis
(b) the y-axis
Do not evaluate the integrals.

Volume: Disks/Rings Method
Volume: Cylindrical Shells
Volume: Rotating Regions
Integrate wrt y

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Find the Intersection Points and Sketch the Region


First, we find the intersection points of y=x y = x and y=x2 y = x^2 :
Set the yy-values equal:
x=x2 x = x^2
x2x=0 x^2 - x = 0
x(x1)=0 x(x - 1) = 0
This gives x=0 x = 0 and x=1 x = 1 .

When x=0 x = 0 , y=0 y = 0 . So, one intersection point is (0,0) (0,0) .
When x=1 x = 1 , y=1 y = 1 . So, the other intersection point is (1,1) (1,1) .

These will be our limits of integration in xx.

Next, determine which function is the "upper" function and which is the "lower" function in the interval [0,1] [0, 1] .
Let's pick a test point, say x=0.5 x = 0.5 :
For y=x y = x : y=0.5 y = 0.5 .
For y=x2 y = x^2 : y=(0.5)2=0.25 y = (0.5)^2 = 0.25 .
Since 0.5>0.25 0.5 > 0.25 , the line y=x y = x is above the parabola y=x2 y = x^2 in the interval (0,1) (0, 1) .
So, yupper=x y_{upper} = x and ylower=x2 y_{lower} = x^2 .


(a) Volume of Revolution about the x-axis


For rotation about the x-axis, we can use the washer method.
The formula is V=πab(R(x)2r(x)2)dx V = \pi \int_a^b (R(x)^2 - r(x)^2) dx .
Here, the outer radius R(x) R(x) is the distance from the x-axis to the upper curve y=x y = x , so R(x)=x R(x) = x .
The inner radius r(x) r(x) is the distance from the x-axis to the lower curve y=x2 y = x^2 , so r(x)=x2 r(x) = x^2 .
The limits of integration are from x=0 x=0 to x=1 x=1 .

The setup for the integral is:
V=π01((x)2(x2)2)dx V = \pi \int_0^1 ((x)^2 - (x^2)^2) dx


(b) Volume of Revolution about the y-axis


For rotation about the y-axis, the cylindrical shells method is often more straightforward if our functions are already in the form y=f(x) y = f(x) .
The formula is V=2πab(shell radius)(shell height)dx V = 2\pi \int_a^b (\text{shell radius}) (\text{shell height}) dx .
Here, the radius of shell at a given x x is simply x x .
The height of shell at a given x x is h(x)=yupperylower=xx2 h(x) = y_{upper} - y_{lower} = x - x^2 .
The limits of integration are from x=0 x=0 to x=1 x=1 .

The setup for the integral is:
V=2π01x(xx2)dx V = 2\pi \int_0^1 x (x - x^2) dx

Alternatively, for part (b), you could use the washer method by integrating with respect to yy. This would require rewriting the functions as x=f(y) x = f(y) : x=yx = y and x=yx = \sqrt{y}. Then R(y)=yR(y) = \sqrt{y} and r(y)=yr(y) = y, with yy from 0 to 1. The integral would be V=π01((y)2(y)2)dy V = \pi \int_0^1 ((\sqrt{y})^2 - (y)^2) dy . Both methods (shells wrt x, or washers wrt y) are valid for rotation about the y-axis.


Summary of Set Up Integrals


(a) Rotation about the x-axis:

V=π01(x2x4)dx \boxed{V = \pi \int_0^1 (x^2 - x^4) dx}





(b) Rotation about the y-axis (using cylindrical shells):

V=2π01x(xx2)dxor equivalently V=2π01(x2x3)dx \boxed{V = 2\pi \int_0^1 x(x - x^2) dx} \quad \text{or equivalently } \quad \boxed{V = 2\pi \int_0^1 (x^2 - x^3) dx}

(Using washer method with respect to yy: V=π01(yy2)dy V = \pi \int_0^1 (y - y^2) dy )
Access Restricted - Please Unlock Unlock Now
(a) Rotation about the x-axis:

V=π01(x2x4)dx \boxed{V = \pi \int_0^1 (x^2 - x^4) dx}





(b) Rotation about the y-axis (using cylindrical shells):

V=2π01x(xx2)dxor equivalently V=2π01(x2x3)dx \boxed{V = 2\pi \int_0^1 x(x - x^2) dx} \quad \text{or equivalently } \quad \boxed{V = 2\pi \int_0^1 (x^2 - x^3) dx}

(Using washer method with respect to yy: V=π01(yy2)dy V = \pi \int_0^1 (y - y^2) dy )
Question B.7 (a)
(Max Marks: 5)
Determine if the series n=1cos(n)nn \sum_{n=1}^{\infty} \frac{\cos(n)}{n\sqrt{n}} converges or diverges, explaining your reasoning.

Series
Series: Comparison Test
Series: Convergence/Divergence
Series: Absolute Convergence
Convergence test: p-test

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Rewrite the Series Term


First, let's rewrite the term nn n\sqrt{n} as a power of n n :
nn=n1n1/2=n1+1/2=n3/2 n\sqrt{n} = n^1 \cdot n^{1/2} = n^{1 + 1/2} = n^{3/2} .
So the series is n=1cos(n)n3/2 \sum_{n=1}^{\infty} \frac{\cos(n)}{n^{3/2}} .

Step 2: Test for Absolute Convergence


To determine if the series converges, we can first test for absolute convergence.
This means we consider the series of the absolute values of the terms:
n=1cos(n)n3/2 \sum_{n=1}^{\infty} \left| \frac{\cos(n)}{n^{3/2}} \right|
Since n3/2>0 n^{3/2} > 0 for n1 n \ge 1 , this is equal to:
n=1cos(n)n3/2 \sum_{n=1}^{\infty} \frac{|\cos(n)|}{n^{3/2}}

Step 3: Use the Boundedness of the Cosine Function


We know that the trigonometric function cosine is bounded:
1cos(n)1 -1 \le \cos(n) \le 1 for all n n .
Therefore, its absolute value is bounded:
0cos(n)1 0 \le |\cos(n)| \le 1 for all n n .

Using this inequality, we can establish a comparison for the terms of our series of absolute values:
Since cos(n)1 |\cos(n)| \le 1 , we can say that
cos(n)n3/21n3/2 \frac{|\cos(n)|}{n^{3/2}} \le \frac{1}{n^{3/2}} for all n1 n \ge 1 .

Step 4: Apply the Direct Comparison Test


We now have an inequality: 0cos(n)n3/21n3/2 0 \le \frac{|\cos(n)|}{n^{3/2}} \le \frac{1}{n^{3/2}} .
We can use the Direct Comparison Test. Let's examine the series n=11n3/2 \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} .

This is a p-series of the form n=11np \sum_{n=1}^{\infty} \frac{1}{n^p} with p=3/2 p = 3/2 .
A p-series converges if p>1 p > 1 and diverges if p1 p \le 1 .
Since p=3/2=1.5 p = 3/2 = 1.5 , which is greater than 1, the p-series n=11n3/2 \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} converges.

According to the Direct Comparison Test, if 0anbn 0 \le a_n \le b_n for all n n (or for all nn beyond some point), and bn \sum b_n converges, then an \sum a_n also converges.
In our case, an=cos(n)n3/2 a_n = \frac{|\cos(n)|}{n^{3/2}} and bn=1n3/2 b_n = \frac{1}{n^{3/2}} .
Since n=11n3/2 \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} converges, and 0cos(n)n3/21n3/2 0 \le \frac{|\cos(n)|}{n^{3/2}} \le \frac{1}{n^{3/2}} , the series
n=1cos(n)n3/2 \sum_{n=1}^{\infty} \frac{|\cos(n)|}{n^{3/2}} also converges.

Step 5: Conclusion on Convergence


Since the series of absolute values, n=1cos(n)n3/2 \sum_{n=1}^{\infty} \left| \frac{\cos(n)}{n^{3/2}} \right| , converges, the original series n=1cos(n)n3/2 \sum_{n=1}^{\infty} \frac{\cos(n)}{n^{3/2}} converges absolutely.

If a series converges absolutely, then it converges.
Therefore, the series n=1cos(n)nn \sum_{n=1}^{\infty} \frac{\cos(n)}{n\sqrt{n}} converges.

The series n=1cos(n)nn converges. \boxed{\text{The series } \sum_{n=1}^{\infty} \frac{\cos(n)}{n\sqrt{n}} \text{ converges.}}
Access Restricted - Please Unlock Unlock Now
The series n=1cos(n)nn converges. \boxed{\text{The series } \sum_{n=1}^{\infty} \frac{\cos(n)}{n\sqrt{n}} \text{ converges.}}
Question B.7 (b)
(Max Marks: 5)
Determine if the series n=1n23n(n+1)! \sum_{n=1}^{\infty} \frac{n^2 3^n}{(n+1)!} converges or diverges, explaining your reasoning.

Series
Series: Ratio test

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Identify an Appropriate Test


The terms of the series involve n2 n^2 , an exponential term 3n 3^n , and a factorial term (n+1)! (n+1)! . The presence of factorials and exponential terms strongly suggests using the Ratio Test to determine convergence or divergence.

The terms of this series are positive for n1 n \ge 1 .

Step 2: Apply the Ratio Test


Let an=n23n(n+1)! a_n = \frac{n^2 3^n}{(n+1)!} .
We need to find the limit L=limnan+1an L = \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| . Since terms are positive, absolute values are not strictly needed here but are part of the general test.

First, write down an+1 a_{n+1} :
Replace n n with n+1 n+1 in the expression for an a_n :
an+1=(n+1)23n+1((n+1)+1)!=(n+1)23n+1(n+2)! a_{n+1} = \frac{(n+1)^2 3^{n+1}}{((n+1)+1)!} = \frac{(n+1)^2 3^{n+1}}{(n+2)!}

Now, form the ratio an+1an \frac{a_{n+1}}{a_n} :
an+1an=(n+1)23n+1(n+2)!n23n(n+1)! \frac{a_{n+1}}{a_n} = \frac{\frac{(n+1)^2 3^{n+1}}{(n+2)!}}{\frac{n^2 3^n}{(n+1)!}}

To simplify this complex fraction, we multiply by the reciprocal of the denominator:
=(n+1)23n+1(n+2)!(n+1)!n23n = \frac{(n+1)^2 3^{n+1}}{(n+2)!} \cdot \frac{(n+1)!}{n^2 3^n}

Group similar terms for algebraic simplification:
=(n+1)2n23n+13n(n+1)!(n+2)! = \frac{(n+1)^2}{n^2} \cdot \frac{3^{n+1}}{3^n} \cdot \frac{(n+1)!}{(n+2)!}

Simplify each part:
1. (n+1)2n2=(n+1n)2=(1+1n)2 \frac{(n+1)^2}{n^2} = \left(\frac{n+1}{n}\right)^2 = \left(1 + \frac{1}{n}\right)^2
2. 3n+13n=3(n+1)n=31=3 \frac{3^{n+1}}{3^n} = 3^{(n+1)-n} = 3^1 = 3
3. (n+1)!(n+2)!=(n+1)!(n+2)(n+1)!=1n+2 \frac{(n+1)!}{(n+2)!} = \frac{(n+1)!}{(n+2)(n+1)!} = \frac{1}{n+2} (since (n+2)!=(n+2)(n+1)! (n+2)! = (n+2) \cdot (n+1)! )

So, the ratio becomes:
an+1an=(1+1n)231n+2=3(1+1n)2n+2 \frac{a_{n+1}}{a_n} = \left(1 + \frac{1}{n}\right)^2 \cdot 3 \cdot \frac{1}{n+2} = \frac{3\left(1 + \frac{1}{n}\right)^2}{n+2}

Step 3: Evaluate the Limit


Now, we evaluate the limit L L :
L=limn3(1+1n)2n+2 L = \lim_{n\to\infty} \frac{3\left(1 + \frac{1}{n}\right)^2}{n+2}

As n n \to \infty :
The term (1+1n)2(1+0)2=12=1 \left(1 + \frac{1}{n}\right)^2 \to (1 + 0)^2 = 1^2 = 1 .
The term n+2 n+2 \to \infty .

So, the limit is:
L=3(1)=0 L = \frac{3(1)}{\infty} = 0

Step 4: Conclusion based on the Ratio Test


The Ratio Test states:
If L=limnan+1an<1 L = \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1 , the series converges absolutely.
If L>1 L > 1 or L= L = \infty , the series diverges.
If L=1 L = 1 , the test is inconclusive.


In our case, L=0 L = 0 .
Since L=0<1 L = 0 < 1 , the series n=1n23n(n+1)! \sum_{n=1}^{\infty} \frac{n^2 3^n}{(n+1)!} converges.



an=n23n(n+1)!an+1=(n+1)23n+1(n+2)!an+1an=(n+1)23n+1(n+2)!(n+1)!n23n=(n+1)2n23n+13n(n+1)!(n+2)!=(n+1n)231n+2=(1+1n)23n+2L=limn(1+1n)23n+2=(1+0)2limn3n+2=10=0Since L=0<1, the series converges by the Ratio Test.
\begin{align*}
a_n &= \frac{n^2 3^n}{(n+1)!} \\
a_{n+1} &= \frac{(n+1)^2 3^{n+1}}{(n+2)!} \\
\\
\frac{a_{n+1}}{a_n} &= \frac{(n+1)^2 3^{n+1}}{(n+2)!} \cdot \frac{(n+1)!}{n^2 3^n} \\
&= \frac{(n+1)^2}{n^2} \cdot \frac{3^{n+1}}{3^n} \cdot \frac{(n+1)!}{(n+2)!} \\
&= \left(\frac{n+1}{n}\right)^2 \cdot 3 \cdot \frac{1}{n+2} \\
&= \left(1 + \frac{1}{n}\right)^2 \cdot \frac{3}{n+2} \\
\\
L &= \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^2 \cdot \frac{3}{n+2} \\
&= (1+0)^2 \cdot \lim_{n\to\infty} \frac{3}{n+2} \\
&= 1 \cdot 0 \\
&= 0 \\
\\
\text{Since } L = 0 < 1 \text{, the series } &\boxed{\text{converges by the Ratio Test.}}
\end{align*}

Access Restricted - Please Unlock Unlock Now

an=n23n(n+1)!an+1=(n+1)23n+1(n+2)!an+1an=(n+1)23n+1(n+2)!(n+1)!n23n=(n+1)2n23n+13n(n+1)!(n+2)!=(n+1n)231n+2=(1+1n)23n+2L=limn(1+1n)23n+2=(1+0)2limn3n+2=10=0Since L=0<1, the series converges by the Ratio Test.
\begin{align*}
a_n &= \frac{n^2 3^n}{(n+1)!} \\
a_{n+1} &= \frac{(n+1)^2 3^{n+1}}{(n+2)!} \\
\\
\frac{a_{n+1}}{a_n} &= \frac{(n+1)^2 3^{n+1}}{(n+2)!} \cdot \frac{(n+1)!}{n^2 3^n} \\
&= \frac{(n+1)^2}{n^2} \cdot \frac{3^{n+1}}{3^n} \cdot \frac{(n+1)!}{(n+2)!} \\
&= \left(\frac{n+1}{n}\right)^2 \cdot 3 \cdot \frac{1}{n+2} \\
&= \left(1 + \frac{1}{n}\right)^2 \cdot \frac{3}{n+2} \\
\\
L &= \lim_{n\to\infty} \left(1 + \frac{1}{n}\right)^2 \cdot \frac{3}{n+2} \\
&= (1+0)^2 \cdot \lim_{n\to\infty} \frac{3}{n+2} \\
&= 1 \cdot 0 \\
&= 0 \\
\\
\text{Since } L = 0 < 1 \text{, the series } &\boxed{\text{converges by the Ratio Test.}}
\end{align*}

Question B.8
(Max Marks: 10)
This multi-part question will guide you through determining the convergence or divergence of a specific series. Part A involves proving a fundamental limit. For Part B, you will use the result of this limit to analyze the series; if you are unable to complete Part A, you may assume the stated result from Part A to proceed with Part B.
Series

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Part A: Prove the Limit


Prove that limn(nn+1)n=1e \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \frac{1}{e} .

Proof:


Let the limit be L L . We want to evaluate:
L=limn(nn+1)n L = \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n

First, we perform an algebraic manipulation on the base of the expression:
nn+1=n+11n+1=n+1n+11n+1=11n+1 \frac{n}{n+1} = \frac{n+1-1}{n+1} = \frac{n+1}{n+1} - \frac{1}{n+1} = 1 - \frac{1}{n+1}

So the limit becomes:
L=limn(11n+1)n L = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right)^n

Now, we use a substitution to transform this into a more recognizable standard limit form.
Let m=n+1 m = n+1 .
As n n \to \infty , it follows that m m \to \infty .
Also, from m=n+1 m = n+1 , we have n=m1 n = m-1 .

Substituting these into our limit expression:
L=limm(11m)m1 L = \lim_{m\to\infty} \left(1 - \frac{1}{m}\right)^{m-1}

We can rewrite the exponent m1 m-1 as m1+(1) m \cdot 1 + (-1) , and use properties of exponents ab+c=abac a^{b+c} = a^b a^c :
L=limm[(11m)m(11m)1] L = \lim_{m\to\infty} \left[ \left(1 - \frac{1}{m}\right)^m \cdot \left(1 - \frac{1}{m}\right)^{-1} \right]

Using the property of limits that the limit of a product is the product of the limits (if they exist):
L=(limm(11m)m)(limm(11m)1) L = \left( \lim_{m\to\infty} \left(1 - \frac{1}{m}\right)^m \right) \cdot \left( \lim_{m\to\infty} \left(1 - \frac{1}{m}\right)^{-1} \right)

The first part of this product is a standard limit form: limx(1+kx)x=ek \lim_{x\to\infty} \left(1 + \frac{k}{x}\right)^x = e^k .
Here, k=1 k = -1 , so:
limm(1+1m)m=e1 \lim_{m\to\infty} \left(1 + \frac{-1}{m}\right)^m = e^{-1}

For the second part of the product:
limm(11m)1=limm111m \lim_{m\to\infty} \left(1 - \frac{1}{m}\right)^{-1} = \lim_{m\to\infty} \frac{1}{1 - \frac{1}{m}}
As m m \to \infty , 1m0 \frac{1}{m} \to 0 .
So, limm111m=110=1 \lim_{m\to\infty} \frac{1}{1 - \frac{1}{m}} = \frac{1}{1 - 0} = 1 .

Combining these results:
L=(e1)(1)=e1=1e L = (e^{-1}) \cdot (1) = e^{-1} = \frac{1}{e}

Thus, we have proven that limn(nn+1)n=1e \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \frac{1}{e} .


L=limn(nn+1)n=limn(n+11n+1)n=limn(11n+1)n
\begin{align*}
L &= \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n \\
&= \lim_{n\to\infty} \left(\frac{n+1-1}{n+1}\right)^n \\
&= \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right)^n \\
\end{align*}


Let m=n+1 m = n+1 . As n n \to \infty , then m m \to \infty . Also, n=m1 n = m-1 .


L=limm(11m)m1=limm[(11m)m(11m)1]=(limm(1+1m)m)(limm(11m)1)=(e1)(110)=e11=1e
\begin{align*}
L &= \lim_{m\to\infty} \left(1 - \frac{1}{m}\right)^{m-1} \\
&= \lim_{m\to\infty} \left[ \left(1 - \frac{1}{m}\right)^m \cdot \left(1 - \frac{1}{m}\right)^{-1} \right] \\
&= \left( \lim_{m\to\infty} \left(1 + \frac{-1}{m}\right)^m \right) \cdot \left( \lim_{m\to\infty} \left(1 - \frac{1}{m}\right)^{-1} \right) \\
&= (e^{-1}) \cdot \left( \frac{1}{1 - 0} \right) \\
&= e^{-1} \cdot 1 \\
&= \boxed{\frac{1}{e}}
\end{align*}





Part B: Determine Series Convergence/Divergence


Using the result from Part A, determine if the series n=1(nn+1)n \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n converges or diverges.

Solution:


We are considering the series n=1an \sum_{n=1}^{\infty} a_n where an=(nn+1)n a_n = \left(\frac{n}{n+1}\right)^n .

To determine the convergence or divergence of this series, we can use the Test for Divergence (also known as the nth Term Test).
The Test for Divergence states that if limnan0 \lim_{n\to\infty} a_n \ne 0 , then the series an \sum a_n diverges.
(If limnan=0 \lim_{n\to\infty} a_n = 0 , the test is inconclusive regarding convergence.)

From Part A, we proved that the limit of the n-th term is:
limnan=limn(nn+1)n=1e \lim_{n\to\infty} a_n = \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \frac{1}{e}

Since 1e12.7180 \frac{1}{e} \approx \frac{1}{2.718} \ne 0 , the condition for the Test for Divergence is met.

Therefore, because the limit of the terms is not zero, the series n=1(nn+1)n \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n diverges.

The Test for Divergence is a fundamental first check for series. If the terms don't go to zero, the series cannot converge. Remember, if the terms *do* go to zero, this test tells you nothing about convergence (the series might converge or still diverge).


For the series n=1(nn+1)n, let an=(nn+1)n.From Part A, we found:limnan=1e.Since limnan=1e0,the series diverges by the Test for Divergence.
\begin{align*}
\text{For the series } &\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n \text{, let } a_n = \left(\frac{n}{n+1}\right)^n. \\
\text{From Part A, we found:} \\
&\lim_{n\to\infty} a_n = \frac{1}{e}. \\
\text{Since } \lim_{n\to\infty} a_n = \frac{1}{e} \ne 0, \\
\text{the series } &\boxed{\text{diverges by the Test for Divergence.}}
\end{align*}

Access Restricted - Please Unlock Unlock Now
8. a)
(Max Marks: 7)
Prove the following limit:

limn(nn+1)n=1e \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \frac{1}{e}
limits: general
limits: definition of exponential

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Part A: Prove the Limit


Prove that limn(nn+1)n=1e \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \frac{1}{e} .

Proof:


Let the limit be L L . We want to evaluate:
L=limn(nn+1)n L = \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n

First, we perform an algebraic manipulation on the base of the expression:
nn+1=n+11n+1=n+1n+11n+1=11n+1 \frac{n}{n+1} = \frac{n+1-1}{n+1} = \frac{n+1}{n+1} - \frac{1}{n+1} = 1 - \frac{1}{n+1}

So the limit becomes:
L=limn(11n+1)n L = \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right)^n

Now, we use a substitution to transform this into a more recognizable standard limit form.
Let m=n+1 m = n+1 .
As n n \to \infty , it follows that m m \to \infty .
Also, from m=n+1 m = n+1 , we have n=m1 n = m-1 .

Substituting these into our limit expression:
L=limm(11m)m1 L = \lim_{m\to\infty} \left(1 - \frac{1}{m}\right)^{m-1}

We can rewrite the exponent m1 m-1 as m1+(1) m \cdot 1 + (-1) , and use properties of exponents ab+c=abac a^{b+c} = a^b a^c :
L=limm[(11m)m(11m)1] L = \lim_{m\to\infty} \left[ \left(1 - \frac{1}{m}\right)^m \cdot \left(1 - \frac{1}{m}\right)^{-1} \right]

Using the property of limits that the limit of a product is the product of the limits (if they exist):
L=(limm(11m)m)(limm(11m)1) L = \left( \lim_{m\to\infty} \left(1 - \frac{1}{m}\right)^m \right) \cdot \left( \lim_{m\to\infty} \left(1 - \frac{1}{m}\right)^{-1} \right)

The first part of this product is a standard limit form: limx(1+kx)x=ek \lim_{x\to\infty} \left(1 + \frac{k}{x}\right)^x = e^k .
Here, k=1 k = -1 , so:
limm(1+1m)m=e1 \lim_{m\to\infty} \left(1 + \frac{-1}{m}\right)^m = e^{-1}

For the second part of the product:
limm(11m)1=limm111m \lim_{m\to\infty} \left(1 - \frac{1}{m}\right)^{-1} = \lim_{m\to\infty} \frac{1}{1 - \frac{1}{m}}
As m m \to \infty , 1m0 \frac{1}{m} \to 0 .
So, limm111m=110=1 \lim_{m\to\infty} \frac{1}{1 - \frac{1}{m}} = \frac{1}{1 - 0} = 1 .

Combining these results:
L=(e1)(1)=e1=1e L = (e^{-1}) \cdot (1) = e^{-1} = \frac{1}{e}

Thus, we have proven that limn(nn+1)n=1e \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \frac{1}{e} .


L=limn(nn+1)n=limn(n+11n+1)n=limn(11n+1)n
\begin{align*}
L &= \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n \\
&= \lim_{n\to\infty} \left(\frac{n+1-1}{n+1}\right)^n \\
&= \lim_{n\to\infty} \left(1 - \frac{1}{n+1}\right)^n \\
\end{align*}


Let m=n+1 m = n+1 . As n n \to \infty , then m m \to \infty . Also, n=m1 n = m-1 .


L=limm(11m)m1=limm[(11m)m(11m)1]=(limm(1+1m)m)(limm(11m)1)=(e1)(110)=e11=1e
\begin{align*}
L &= \lim_{m\to\infty} \left(1 - \frac{1}{m}\right)^{m-1} \\
&= \lim_{m\to\infty} \left[ \left(1 - \frac{1}{m}\right)^m \cdot \left(1 - \frac{1}{m}\right)^{-1} \right] \\
&= \left( \lim_{m\to\infty} \left(1 + \frac{-1}{m}\right)^m \right) \cdot \left( \lim_{m\to\infty} \left(1 - \frac{1}{m}\right)^{-1} \right) \\
&= (e^{-1}) \cdot \left( \frac{1}{1 - 0} \right) \\
&= e^{-1} \cdot 1 \\
&= \boxed{\frac{1}{e}}
\end{align*}




Access Restricted - Please Unlock Unlock Now
See the walk-through above for the complete solution.
8. b)
(Max Marks: 5)
Using the result established or assumed in Part A, determine if the following series converges or diverges. Explain your reasoning.

n=1(nn+1)n \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n
Series
Series: Test for Divergence

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Part B: Determine Series Convergence/Divergence


Using the result from Part A, determine if the series n=1(nn+1)n \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n converges or diverges.

Solution:


We are considering the series n=1an \sum_{n=1}^{\infty} a_n where an=(nn+1)n a_n = \left(\frac{n}{n+1}\right)^n .

To determine the convergence or divergence of this series, we can use the Test for Divergence (also known as the nth Term Test).
The Test for Divergence states that if limnan0 \lim_{n\to\infty} a_n \ne 0 , then the series an \sum a_n diverges.
(If limnan=0 \lim_{n\to\infty} a_n = 0 , the test is inconclusive regarding convergence.)

From Part A, we proved that the limit of the n-th term is:
limnan=limn(nn+1)n=1e \lim_{n\to\infty} a_n = \lim_{n\to\infty} \left(\frac{n}{n+1}\right)^n = \frac{1}{e}

Since 1e12.7180 \frac{1}{e} \approx \frac{1}{2.718} \ne 0 , the condition for the Test for Divergence is met.

Therefore, because the limit of the terms is not zero, the series n=1(nn+1)n \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n diverges.

The Test for Divergence is a fundamental first check for series. If the terms don't go to zero, the series cannot converge. Remember, if the terms *do* go to zero, this test tells you nothing about convergence (the series might converge or still diverge).


For the series n=1(nn+1)n, let an=(nn+1)n.From Part A, we found:limnan=1e.Since limnan=1e0,the series diverges by the Test for Divergence.
\begin{align*}
\text{For the series } &\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n \text{, let } a_n = \left(\frac{n}{n+1}\right)^n. \\
\text{From Part A, we found:} \\
&\lim_{n\to\infty} a_n = \frac{1}{e}. \\
\text{Since } \lim_{n\to\infty} a_n = \frac{1}{e} \ne 0, \\
\text{the series } &\boxed{\text{diverges by the Test for Divergence.}}
\end{align*}

Access Restricted - Please Unlock Unlock Now

For the series n=1(nn+1)n, let an=(nn+1)n.From Part A, we found:limnan=1e.Since limnan=1e0,the series diverges by the Test for Divergence.
\begin{align*}
\text{For the series } &\sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n \text{, let } a_n = \left(\frac{n}{n+1}\right)^n. \\
\text{From Part A, we found:} \\
&\lim_{n\to\infty} a_n = \frac{1}{e}. \\
\text{Since } \lim_{n\to\infty} a_n = \frac{1}{e} \ne 0, \\
\text{the series } &\boxed{\text{diverges by the Test for Divergence.}}
\end{align*}