Question A.1
(Max Marks: 5)
Evaluate the definite integral 11(5x32x+arctanx)dx \int_{-1}^{1} (5x^3 - 2x + \arctan x) \, dx .
Integrals: even/odd

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Identify the Interval and Integrand

The integral is 11(5x32x+arctanx)dx \int_{-1}^{1} (5x^3 - 2x + \arctan x) \, dx .
The interval of integration is [1,1] [-1, 1] . This is a symmetric interval because it is of the form [a,a] [-a, a] with a=1 a=1 .
The integrand is f(x)=5x32x+arctanx f(x) = 5x^3 - 2x + \arctan x .

Step 2: Check for Symmetry in the Integrand

When integrating over a symmetric interval [a,a] [-a, a] , it's useful to check if the integrand f(x) f(x) is an odd function or an even function.
- Recall: A function f f is odd if f(x)=f(x) f(-x) = -f(x) for all x x in its domain.
- Recall: A function f f is even if f(x)=f(x) f(-x) = f(x) for all x x in its domain.

Let's check the symmetry of f(x)=5x32x+arctanx f(x) = 5x^3 - 2x + \arctan x by replacing x x with x -x :
f(x)=5(x)32(x)+arctan(x)
f(-x) = 5(-x)^3 - 2(-x) + \arctan(-x)

We know that:
- (x)3=x3 (-x)^3 = -x^3
- arctan(x)=arctan(x) \arctan(-x) = -\arctan(x) (Arctangent is an odd function)
Substitute these back:
f(x)=5(x3)2(x)+(arctanx)=5x3+2xarctanx \begin{align*}
f(-x) &= 5(-x^3) - 2(-x) + (-\arctan x) \\
&= -5x^3 + 2x - \arctan x
\end{align*}

Now, compare this to f(x) -f(x) :
f(x)=(5x32x+arctanx)=5x3+2xarctanx \begin{align*}
-f(x) &= -(5x^3 - 2x + \arctan x) \\
&= -5x^3 + 2x - \arctan x
\end{align*}

Since f(x)=f(x) f(-x) = -f(x) , the integrand f(x)=5x32x+arctanx f(x) = 5x^3 - 2x + \arctan x is an odd function.
Alternatively, you could note that 5x3 5x^3 is odd, 2x -2x is odd, and arctanx \arctan x is odd. The sum of odd functions is always an odd function.

Step 3: Apply the Property of Integrals of Odd Functions

There is a property for definite integrals over symmetric intervals:
If f(x) f(x) is an odd function and continuous on [a,a] [-a, a] , then aaf(x)dx=0 \int_{-a}^{a} f(x) \, dx = 0 .
Geometrically, this is because the signed area from a -a to 0 cancels out the signed area from 0 to a a .

Since our integrand f(x)=5x32x+arctanx f(x) = 5x^3 - 2x + \arctan x is an odd function and the interval is [1,1] [-1, 1] , we can directly apply this property.

Step 4: Conclusion

11(5x32x+arctanx)dx=0 \int_{-1}^{1} (5x^3 - 2x + \arctan x) \, dx = 0
The value of the definite integral is 0. This corresponds to option (A).

0
\boxed{ 0 }
Access Restricted - Please Unlock Unlock Now
0
\boxed{ 0 }
Question A.2
(Max Marks: 5)
The limit limn1ni=1n11+(i/n)2 \lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{1+(i/n)^2} is equal to which definite integral?
Riemann Sums
Limits: using Riemann Sums

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Recall the Definition of the Definite Integral

The definition of the definite integral as a limit of Riemann sums is:
abf(x)dx=limni=1nf(xi)Δx
\int_{a}^{b} f(x) \, dx = \lim_{n\to\infty} \sum_{i=1}^{n} f(x_i^*) \Delta x

Where:
- [a,b] [a, b] is the interval of integration.
- n n is the number of subintervals.
- Δx=ban \Delta x = \frac{b-a}{n} is the width of each subinterval.
- xi x_i^* is the sample point in the i i -th subinterval.

Step 2: Analyze the Given Limit Expression

The given limit expression is:
L=limni=1n11+(i/n)21n
L = \lim_{n\to\infty} \sum_{i=1}^{n} \frac{1}{1+(i/n)^2} \cdot \frac{1}{n}

We need to match this structure limni=1nf(xi)Δx \lim_{n\to\infty} \sum_{i=1}^{n} f(x_i^*) \Delta x by identifying each component. The summation is already written using sigma notation.

Step 3: Identify Δx \Delta x and the Interval

The term multiplying the summation terms inside the limit is 1n \frac{1}{n} . This strongly suggests that Δx \Delta x corresponds to this term:
Δx=1n \Delta x = \frac{1}{n}
Since Δx=ban \Delta x = \frac{b-a}{n} , equating these implies the length of the integration interval is ba=1 b-a = 1 .
A standard and simple choice for an interval of length 1 is [a,b]=[0,1] [a, b] = [0, 1] .

Step 4: Identify the Sample Points xi x_i^* and Function f(x) f(x)

Assuming the interval is [0,1] [0, 1] and Δx=1/n \Delta x = 1/n , let's consider the most common choice for sample points: the right endpoints.
The formula for right endpoints is xi=a+iΔx x_i = a + i \Delta x . With a=0 a=0 and Δx=1/n \Delta x = 1/n :
xi=0+i(1n)=in x_i = 0 + i\left(\frac{1}{n}\right) = \frac{i}{n}
Now we look at the term inside the summation in the given limit: 11+(i/n)2 \frac{1}{1+(i/n)^2} .
If we substitute our right endpoint xi=i/n x_i = i/n into this term, we get:
11+(xi)2 \frac{1}{1+(x_i)^2}
This perfectly matches the form f(xi) f(x_i^*) in the Riemann sum definition if we let xi=xi x_i^* = x_i (right endpoints) and define the function f(x) f(x) as:
f(x)=11+x2 f(x) = \frac{1}{1+x^2}
The structure f(xi)Δx \sum f(x_i) \Delta x aligns perfectly with the given sum i=1n11+(i/n)21n \sum_{i=1}^{n} \frac{1}{1+(i/n)^2} \cdot \frac{1}{n} if we choose a=0,b=1,Δx=1/n,xi=i/n a=0, b=1, \Delta x = 1/n, x_i = i/n , and f(x)=1/(1+x2) f(x) = 1/(1+x^2) .

Step 5: Write the Corresponding Definite Integral

Using the identified components:
- Interval: [a,b]=[0,1] [a, b] = [0, 1]
- Function: f(x)=11+x2 f(x) = \frac{1}{1+x^2}
The limit of the Riemann sum corresponds to the definite integral:
abf(x)dx=0111+x2dx
\int_{a}^{b} f(x) \, dx = \int_{0}^{1} \frac{1}{1+x^2} \, dx


Step 6: Conclusion

The given limit corresponds to the definite integral 0111+x2dx \int_{0}^{1} \frac{1}{1+x^2} \, dx .
Access Restricted - Please Unlock Unlock Now
0111+x2dx
\boxed{ \int_{0}^{1} \frac{1}{1+x^2} \, dx }
Question A.3
(Max Marks: 5)
The infinite series n=15n+2n6n \sum_{n=1}^{\infty} \frac{5^n + 2^n}{6^n} is equal to which of the given options?
(A) 6
(B) 11/2
(C) 7/2
(D) The series is divergent
Series
Series: Geometric

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Rewrite the General Term

The series is S=n=15n+2n6n S = \sum_{n=1}^{\infty} \frac{5^n + 2^n}{6^n} .
Let an a_n be the general term. We can split the fraction:
an=5n+2n6n=5n6n+2n6n=(56)n+(26)n=(56)n+(13)n \begin{align*} a_n &= \frac{5^n + 2^n}{6^n} \\ &= \frac{5^n}{6^n} + \frac{2^n}{6^n} \\ &= \left(\frac{5}{6}\right)^n + \left(\frac{2}{6}\right)^n \\ &= \left(\frac{5}{6}\right)^n + \left(\frac{1}{3}\right)^n \end{align*}

Step 2: Split the Series

Since the series an \sum a_n is a sum of two terms, we can investigate the convergence of the series corresponding to each term. If both converge, the sum of the original series is the sum of the individual series.
Property of Convergent Series: If un \sum u_n and vn \sum v_n both converge, then (un+vn)=un+vn \sum (u_n + v_n) = \sum u_n + \sum v_n .
Let's split the series:
S=n=1[(56)n+(13)n]=n=1(56)n+n=1(13)n \begin{align*} S &= \sum_{n=1}^{\infty} \left[ \left(\frac{5}{6}\right)^n + \left(\frac{1}{3}\right)^n \right] \\ &= \sum_{n=1}^{\infty} \left(\frac{5}{6}\right)^n + \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n \end{align*}

Step 3: Analyze the First Series

The first series is S1=n=1(56)n S_1 = \sum_{n=1}^{\infty} \left(\frac{5}{6}\right)^n .
This is a geometric series.
- The common ratio is r1=5/6 r_1 = 5/6 .
- The first term (when n=1 n=1 ) is a1=(5/6)1=5/6 a_1 = (5/6)^1 = 5/6 .
Since the absolute value of the common ratio r1=5/6<1 |r_1| = 5/6 < 1 , the series converges.
The sum of a convergent geometric series starting from n=1 n=1 is given by first term1r \frac{\text{first term}}{1 - r} .
S1=a11r1=5/615/6=5/61/6=5 \begin{align*} S_1 &= \frac{a_1}{1 - r_1} \\ &= \frac{5/6}{1 - 5/6} \\ &= \frac{5/6}{1/6} \\ &= 5 \end{align*}

Step 4: Analyze the Second Series

The second series is S2=n=1(13)n S_2 = \sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n .
This is also a geometric series.
- The common ratio is r2=1/3 r_2 = 1/3 .
- The first term (when n=1 n=1 ) is a2=(1/3)1=1/3 a_2 = (1/3)^1 = 1/3 .
Since the absolute value of the common ratio r2=1/3<1 |r_2| = 1/3 < 1 , the series converges.
The sum is:
S2=a21r2=1/311/3=1/32/3=12 \begin{align*} S_2 &= \frac{a_2}{1 - r_2} \\ &= \frac{1/3}{1 - 1/3} \\ &= \frac{1/3}{2/3} \\ &= \frac{1}{2} \end{align*}
Both series converge, so we can find the sum of the original series by adding the sums S1 S_1 and S2 S_2 .

Step 5: Calculate the Total Sum

The sum of the original series is S=S1+S2 S = S_1 + S_2 .
S=5+12=102+12=112 \begin{align*}
S &= 5 + \frac{1}{2} \\
&= \frac{10}{2} + \frac{1}{2} \\
&= \frac{11}{2}
\end{align*}


Step 6: Conclusion

The sum of the infinite series is 112 \frac{11}{2} .
Comparing this to the options:
(A) 6
(B) 11/2
(C) 7/2
(D) The series is divergent

The correct option is (B).
(B)112
\boxed{ (B) \, \frac{11}{2} }
Access Restricted - Please Unlock Unlock Now
(B)112
\boxed{ (B) \, \frac{11}{2} }
Question A.4
(Max Marks: 5)
Find the radius of convergence of the series n=1(x2)nn3n \sum_{n=1}^{\infty} \frac{(x-2)^n}{n 3^n} .
Power Series: Radius of convergence
Power Series

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Identify the Series and Choose a Test

The given series is n=1(x2)nn3n \sum_{n=1}^{\infty} \frac{(x-2)^n}{n 3^n} . This is a power series centered at a=2 a=2 .
To find the radius of convergence, the Ratio Test is generally the most effective method.

Step 2: Apply the Ratio Test

Let an=(x2)nn3n a_n = \frac{(x-2)^n}{n 3^n} . The Ratio Test examines the limit:
L=limnan+1an L = \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|
First, write out an+1 a_{n+1} :
an+1=(x2)n+1(n+1)3n+1 a_{n+1} = \frac{(x-2)^{n+1}}{(n+1) 3^{n+1}}
Now form the ratio an+1an \left| \frac{a_{n+1}}{a_n} \right| and simplify:
an+1an=(x2)n+1(n+1)3n+1÷(x2)nn3n=(x2)n+1(n+1)3n+1n3n(x2)n=(x2)n+1(x2)n3n3n+1nn+1=(x2)13nn+1=x23nn+1 \begin{align*} \left| \frac{a_{n+1}}{a_n} \right| &= \left| \frac{(x-2)^{n+1}}{(n+1) 3^{n+1}} \div \frac{(x-2)^n}{n 3^n} \right| \\ &= \left| \frac{(x-2)^{n+1}}{(n+1) 3^{n+1}} \cdot \frac{n 3^n}{(x-2)^n} \right| \\ &= \left| \frac{(x-2)^{n+1}}{(x-2)^n} \cdot \frac{3^n}{3^{n+1}} \cdot \frac{n}{n+1} \right| \\ &= \left| (x-2) \cdot \frac{1}{3} \cdot \frac{n}{n+1} \right| \\ &= \frac{|x-2|}{3} \cdot \frac{n}{n+1} \end{align*}
(Since n1 n \ge 1 , nn+1 \frac{n}{n+1} is positive).

Step 3: Evaluate the Limit L

Now find the limit of the ratio as n n \to \infty :
L=limn(x23nn+1) \begin{align*} L &= \lim_{n\to\infty} \left( \frac{|x-2|}{3} \cdot \frac{n}{n+1} \right) \end{align*}
Since x23 \frac{|x-2|}{3} does not depend on n n , we can pull it out of the limit:
L=x23limn(nn+1) \begin{align*} L &= \frac{|x-2|}{3} \lim_{n\to\infty} \left( \frac{n}{n+1} \right) \end{align*}
Evaluate the remaining limit:
limn(nn+1)=limn(n/n(n+1)/n)=limn(11+1/n)=11+0=1 \begin{align*} \lim_{n\to\infty} \left( \frac{n}{n+1} \right) &= \lim_{n\to\infty} \left( \frac{n/n}{(n+1)/n} \right) \\ &= \lim_{n\to\infty} \left( \frac{1}{1 + 1/n} \right) \\ &= \frac{1}{1 + 0} = 1 \end{align*}
Substitute this back into the expression for L L :
L=x231=x23 L = \frac{|x-2|}{3} \cdot 1 = \frac{|x-2|}{3}

Step 4: Determine the Condition for Convergence

The Ratio Test states that the series converges absolutely if L<1 L < 1 .
x23<1 \frac{|x-2|}{3} < 1
Solve this inequality for x2 |x-2| :
x2<3 |x-2| < 3
This inequality defines the interval of convergence, centered at a=2 a=2 . The form is xa<R |x-a| < R , where R R is the radius of convergence.

Step 5: Identify the Radius of Convergence

Comparing x2<3 |x-2| < 3 to the standard form xa<R |x-a| < R , we see that the radius of convergence is R=3 R = 3 .

Step 6: Conclusion

The radius of convergence for the series n=1(x2)nn3n \sum_{n=1}^{\infty} \frac{(x-2)^n}{n 3^n} is 3.

3
\boxed{ 3 }
Access Restricted - Please Unlock Unlock Now
3
\boxed{ 3 }
Question A.5
(Max Marks: 5)
Which one of the following improper integrals converges?
(A) 1lnxxdx \int_{1}^{\infty} \frac{\ln x}{x} dx
(B) 011x3dx \int_{0}^{1} \frac{1}{\sqrt[3]{x}} dx
(C) 1xx2+1dx \int_{1}^{\infty} \frac{x}{x^2+1} dx
(D) 0π/2tanxdx \int_{0}^{\pi/2} \tan x \, dx
integrals
Integrals: Improper

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Analysis of Option (A)

Integral: IA=1lnxxdx I_A = \int_{1}^{\infty} \frac{\ln x}{x} dx
Type: This is an improper integral of Type 1 due to the infinite upper limit.
Method: We can try to evaluate it using a limit, possibly with u-substitution.
Let u=lnx u = \ln x . Then du=1xdx du = \frac{1}{x} dx .
Change limits:
- When x=1 x=1 , u=ln1=0 u = \ln 1 = 0 .
- As x x \to \infty , u=lnx u = \ln x \to \infty .
Substitute:
IA=0udu=limb0budu=limb[u22]0b=limb(b22022)=limbb22= \begin{align*} I_A &= \int_{0}^{\infty} u \, du \\ &= \lim_{b\to\infty} \int_{0}^{b} u \, du \\ &= \lim_{b\to\infty} \left[ \frac{u^2}{2} \right]_{0}^{b} \\ &= \lim_{b\to\infty} \left( \frac{b^2}{2} - \frac{0^2}{2} \right) \\ &= \lim_{b\to\infty} \frac{b^2}{2} \\ &= \infty \end{align*}
Conclusion: The integral 1lnxxdx \int_{1}^{\infty} \frac{\ln x}{x} dx diverges.

Analysis of Option (B)

Integral: IB=011x3dx I_B = \int_{0}^{1} \frac{1}{\sqrt[3]{x}} dx
Type: This is an improper integral of Type 2 because the integrand 1x1/3 \frac{1}{x^{1/3}} has an infinite discontinuity (vertical asymptote) at the lower limit x=0 x=0 .
Method: This fits the form of a p-integral at a finite endpoint: 0a1xpdx \int_{0}^{a} \frac{1}{x^p} dx .
Rewrite the integrand: 1x3=1x1/3 \frac{1}{\sqrt[3]{x}} = \frac{1}{x^{1/3}} .
Here, p=1/3 p = 1/3 .
Recall the convergence rule for Type 2 p-integrals: 0a1xpdx \int_{0}^{a} \frac{1}{x^p} dx converges if p<1 p < 1 and diverges if p1 p \ge 1 .
Since p=1/3<1 p = 1/3 < 1 , the integral converges.
Conclusion: The integral 011x3dx \int_{0}^{1} \frac{1}{\sqrt[3]{x}} dx converges.

Analysis of Option (C)

Integral: IC=1xx2+1dx I_C = \int_{1}^{\infty} \frac{x}{x^2+1} dx
Type: This is an improper integral of Type 1 due to the infinite upper limit.
Method 1: Evaluation using u-substitution.
Let u=x2+1 u = x^2+1 . Then du=2xdx du = 2x \, dx , so xdx=12du x \, dx = \frac{1}{2} du .
Change limits:
- When x=1 x=1 , u=12+1=2 u = 1^2+1 = 2 .
- As x x \to \infty , u=x2+1 u = x^2+1 \to \infty .
Substitute:
IC=21u(12du)=1221udu=12limb2b1udu=12limb[lnu]2b=12limb(lnbln2)=12(ln2)= \begin{align*} I_C &= \int_{2}^{\infty} \frac{1}{u} \left( \frac{1}{2} du \right) \\ &= \frac{1}{2} \int_{2}^{\infty} \frac{1}{u} \, du \\ &= \frac{1}{2} \lim_{b\to\infty} \int_{2}^{b} \frac{1}{u} \, du \\ &= \frac{1}{2} \lim_{b\to\infty} [\ln|u|]_{2}^{b} \\ &= \frac{1}{2} \lim_{b\to\infty} (\ln b - \ln 2) \\ &= \frac{1}{2} (\infty - \ln 2) \\ &= \infty \end{align*}
Conclusion (Method 1): The integral 1xx2+1dx \int_{1}^{\infty} \frac{x}{x^2+1} dx diverges.
Method 2: Limit Comparison Test (LCT).
Compare an=xx2+1 a_n = \frac{x}{x^2+1} with bn=xx2=1x b_n = \frac{x}{x^2} = \frac{1}{x} .
limxanbn=limxx/(x2+1)1/x=limxx2x2+1=limx11+1/x2=11+0=1 \begin{align*} \lim_{x\to\infty} \frac{a_n}{b_n} &= \lim_{x\to\infty} \frac{x/(x^2+1)}{1/x} \\ &= \lim_{x\to\infty} \frac{x^2}{x^2+1} \\ &= \lim_{x\to\infty} \frac{1}{1+1/x^2} \\ &= \frac{1}{1+0} \\ &= 1 \end{align*}
Since the limit is finite and positive (1), and 11xdx \int_{1}^{\infty} \frac{1}{x} dx diverges (p-integral with p=1 p=1 ), IC I_C also diverges by LCT.

Analysis of Option (D)

Integral: ID=0π/2tanxdx I_D = \int_{0}^{\pi/2} \tan x \, dx
Type: This is an improper integral of Type 2 because tanx=sinxcosx \tan x = \frac{\sin x}{\cos x} has an infinite discontinuity (vertical asymptote) at the upper limit x=π/2 x=\pi/2 (where cosx=0 \cos x = 0 ).
Method: Evaluate using the limit definition.
The antiderivative of tanx \tan x is lncosx -\ln|\cos x| .
ID=limb(π/2)0btanxdx=limb(π/2)[lncosx]0b=limb(π/2)(lncosb)(lncos0)=limb(π/2)(lncosb)+ln1=limb(π/2)(lncosb) \begin{align*} I_D &= \lim_{b\to (\pi/2)^{-}} \int_{0}^{b} \tan x \, dx \\ &= \lim_{b\to (\pi/2)^{-}} [-\ln|\cos x|]_{0}^{b} \\ &= \lim_{b\to (\pi/2)^{-}} (-\ln|\cos b|) - (-\ln|\cos 0|) \\ &= \lim_{b\to (\pi/2)^{-}} (-\ln|\cos b|) + \ln|1| \\ &= \lim_{b\to (\pi/2)^{-}} (-\ln|\cos b|) \end{align*}
As b(π/2) b \to (\pi/2)^{-} , cosb0+ \cos b \to 0^{+} . Therefore, cosb0+ |\cos b| \to 0^{+} .
As the argument of ln \ln approaches 0+ 0^{+} , ln(cosb) \ln(|\cos b|) \to -\infty .
So, the limit is ()=+ -(-\infty) = +\infty .
Conclusion: The integral 0π/2tanxdx \int_{0}^{\pi/2} \tan x \, dx diverges.

Final Conclusion

Comparing the results for the four options:
(A) Diverges
(B) Converges
(C) Diverges
(D) Diverges

The only convergent integral is option (B).
(B)011x3dx
\boxed{ (B) \, \int_{0}^{1} \frac{1}{\sqrt[3]{x}} dx }
Access Restricted - Please Unlock Unlock Now
The only convergent integral is option (B).
(B)011x3dx
\boxed{ (B) \, \int_{0}^{1} \frac{1}{\sqrt[3]{x}} dx }
Question A.6
(Max Marks: 5)
Which option is the derivative of f(x)=x2x3cos(t2)dt f(x) = \int_{x^2}^{x^3} \cos(t^2) \, dt with respect to x x ?

(A) cos(x6)cos(x4) \cos(x^6) - \cos(x^4)
(B) 3x2cos(x6)2xcos(x4) 3x^2 \cos(x^6) - 2x \cos(x^4)
(C) sin(x6)(3x2)sin(x4)(2x) \sin(x^6)(3x^2) - \sin(x^4)(2x)
(D) 3x2sin(x6)2xsin(x4) 3x^2 \sin(x^6) - 2x \sin(x^4)
Fundamental Theorem of Calculus

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Recall the Fundamental Theorem of Calculus (Generalized)

We need to find f(x)=ddx(h(x)g(x)F(t)dt) f'(x) = \frac{d}{dx} \left( \int_{h(x)}^{g(x)} F(t) \, dt \right) .
The Fundamental Theorem of Calculus, Part 1 (FTC Part 1), extended for variable limits of integration, states:

ddx(h(x)g(x)F(t)dt)=F(g(x))g(x)F(h(x))h(x)

\frac{d}{dx} \left( \int_{h(x)}^{g(x)} F(t) \, dt \right) = F(g(x)) \cdot g'(x) - F(h(x)) \cdot h'(x)




This formula combines FTC Part 1 (ddxaxF(t)dt=F(x) \frac{d}{dx} \int_a^x F(t) dt = F(x) ) with the Chain Rule. You evaluate the integrand at the upper limit and multiply by the upper limit's derivative, then subtract the integrand evaluated at the lower limit multiplied by the lower limit's derivative.

Step 2: Identify the Components

In our problem f(x)=x2x3cos(t2)dt f(x) = \int_{x^2}^{x^3} \cos(t^2) \, dt :
- The integrand is F(t)=cos(t2) F(t) = \cos(t^2) .
- The upper limit of integration is g(x)=x3 g(x) = x^3 .
- The lower limit of integration is h(x)=x2 h(x) = x^2 .

Step 3: Find the Derivatives of the Limits

We need the derivatives of the upper and lower limits with respect to x x :
g(x)=ddx(x3)=3x2 g'(x) = \frac{d}{dx}(x^3) = 3x^2
h(x)=ddx(x2)=2x h'(x) = \frac{d}{dx}(x^2) = 2x

Step 4: Evaluate the Integrand at the Limits

We need to evaluate the integrand F(t)=cos(t2) F(t) = \cos(t^2) at the upper limit g(x)=x3 g(x) = x^3 and the lower limit h(x)=x2 h(x) = x^2 :
F(g(x))=F(x3)=cos((x3)2)=cos(x6) F(g(x)) = F(x^3) = \cos((x^3)^2) = \cos(x^6)
F(h(x))=F(x2)=cos((x2)2)=cos(x4) F(h(x)) = F(x^2) = \cos((x^2)^2) = \cos(x^4)

Step 5: Apply the Generalized FTC Formula

Now substitute all the pieces into the formula: f(x)=F(g(x))g(x)F(h(x))h(x) f'(x) = F(g(x)) g'(x) - F(h(x)) h'(x)
f(x)=(cos(x6))(3x2)(cos(x4))(2x)=3x2cos(x6)2xcos(x4) \begin{align*} f'(x) &= (\cos(x^6)) \cdot (3x^2) - (\cos(x^4)) \cdot (2x) \\ &= 3x^2 \cos(x^6) - 2x \cos(x^4) \end{align*}

Step 6: Conclusion

The derivative is 3x2cos(x6)2xcos(x4) 3x^2 \cos(x^6) - 2x \cos(x^4) .
Comparing this to the options:
(A) cos(x6)cos(x4) \cos(x^6) - \cos(x^4)
(B) 3x2cos(x6)2xcos(x4) 3x^2 \cos(x^6) - 2x \cos(x^4)
(C) sin(x6)(3x2)sin(x4)(2x) \sin(x^6)(3x^2) - \sin(x^4)(2x)
(D) 3x2sin(x6)2xsin(x4) 3x^2 \sin(x^6) - 2x \sin(x^4)

The correct option is (B).
(B)3x2cos(x6)2xcos(x4)
\boxed{ (B) \, 3x^2 \cos(x^6) - 2x \cos(x^4) }
Access Restricted - Please Unlock Unlock Now
(B)3x2cos(x6)2xcos(x4)
\boxed{ (B) \, 3x^2 \cos(x^6) - 2x \cos(x^4) }
Question B.1
(Max Marks: 15)
Find the average value of f(x)=arctanx f(x) = \arctan x over the interval [0,1] [0, 1] .
integrals
Integrals: Integration By Parts
integrals: inverse trig
Integrals: Average Value

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Recall the Formula for Average Value

The average value of a continuous function f(x) f(x) over a closed interval [a,b] [a, b] is given by the formula:
favg=1baabf(x)dx
f_{avg} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx


Step 2: Identify Components for This Problem

- The function is f(x)=arctanx f(x) = \arctan x .
- The interval is [a,b]=[0,1] [a, b] = [0, 1] .
- The length of the interval is ba=10=1 b-a = 1 - 0 = 1 .
Substituting these into the formula, we need to calculate:
favg=11001arctanxdx=01arctanxdx
f_{avg} = \frac{1}{1-0} \int_{0}^{1} \arctan x \, dx = \int_{0}^{1} \arctan x \, dx

The average value is the value of the definite integral 01arctanxdx \int_{0}^{1} \arctan x \, dx .

Step 3: Choose an Integration Technique

The integral arctanxdx \int \arctan x \, dx is not a basic integral form. It can be solved using Integration by Parts, where we treat arctanx \arctan x as one part and dx dx (or 1dx 1 \cdot dx ) as the other part. The formula is udv=uvvdu \int u \, dv = uv - \int v \, du .

Step 4: Apply Integration by Parts

Let's choose u u and dv dv . According to the LIATE/LIPET guideline (Inverse Trig comes before Algebraic/Polynomial which is just 1 here), we choose:
Let:
u=arctanx u = \arctan x
dv=dx dv = dx
Now, find du du by differentiating u u , and find v v by integrating dv dv :
du=11+x2dx du = \frac{1}{1+x^2} dx
v=dx=x v = \int dx = x
Substitute these into the integration by parts formula:
arctanxdx=uvvdu=(arctanx)(x)x(11+x2dx)=xarctanxx1+x2dx \begin{align*}
\int \arctan x \, dx &= uv - \int v \, du \\
&= (\arctan x)(x) - \int x \left( \frac{1}{1+x^2} dx \right) \\
&= x \arctan x - \int \frac{x}{1+x^2} dx
\end{align*}

The remaining integral x1+x2dx \int \frac{x}{1+x^2} dx can be solved using a simple u-substitution.

Step 4a: Evaluate the Remaining Integral

Let w=1+x2 w = 1+x^2 . Then dw=2xdx dw = 2x \, dx , which means xdx=12dw x \, dx = \frac{1}{2} dw .
x1+x2dx=1w(12dw)=121wdw=12lnw+C1=12ln(1+x2)+C1 \begin{align*}
\int \frac{x}{1+x^2} dx &= \int \frac{1}{w} \left( \frac{1}{2} dw \right) \\
&= \frac{1}{2} \int \frac{1}{w} dw \\
&= \frac{1}{2} \ln|w| + C_1 \\
&= \frac{1}{2} \ln(1+x^2) + C_1
\end{align*}

(Absolute value is dropped since 1+x2 1+x^2 is always positive).

Step 4b: Complete the Antiderivative

Substitute the result from Step 4a back into the integration by parts result:
arctanxdx=xarctanx12ln(1+x2)+C \begin{align*}
\int \arctan x \, dx &= x \arctan x \\ &\quad - \frac{1}{2} \ln(1+x^2) + C
\end{align*}

The antiderivative is F(x)=xarctanx12ln(1+x2) F(x) = x \arctan x - \frac{1}{2} \ln(1+x^2) .

Step 5: Evaluate the Definite Integral

Now we evaluate the definite integral using the antiderivative F(x) F(x) and the limits a=0,b=1 a=0, b=1 :
01arctanxdx=[xarctanx12ln(1+x2)]01=F(1)F(0) \begin{align*}
\int_{0}^{1} \arctan x \, dx &= \left[ x \arctan x - \frac{1}{2} \ln(1+x^2) \right]_{0}^{1} \\
&= F(1) - F(0)
\end{align*}

Evaluate F(1) F(1) :
F(1)=(1)arctan(1)12ln(1+12)=1π412ln(2)=π4ln22 \begin{align*} F(1) &= (1)\arctan(1) - \frac{1}{2} \ln(1+1^2) \\ &= 1 \cdot \frac{\pi}{4} - \frac{1}{2} \ln(2) \\ &= \frac{\pi}{4} - \frac{\ln 2}{2} \end{align*}
Evaluate F(0) F(0) :
F(0)=(0)arctan(0)12ln(1+02)=0012ln(1)=0120=0 \begin{align*} F(0) &= (0)\arctan(0) - \frac{1}{2} \ln(1+0^2) \\ &= 0 \cdot 0 - \frac{1}{2} \ln(1) \\ &= 0 - \frac{1}{2} \cdot 0 = 0 \end{align*}
Calculate the difference:
01arctanxdx=F(1)F(0)=(π4ln22)0=π4ln22 \begin{align*}
\int_{0}^{1} \arctan x \, dx &= F(1) - F(0) \\ &= \left( \frac{\pi}{4} - \frac{\ln 2}{2} \right) - 0 \\ &= \frac{\pi}{4} - \frac{\ln 2}{2}
\end{align*}


Step 6: Calculate the Average Value

From Step 2, we found that favg=01arctanxdx f_{avg} = \int_{0}^{1} \arctan x \, dx .
Since the integral evaluates to π4ln22 \frac{\pi}{4} - \frac{\ln 2}{2} , this is the average value.

Step 7: Conclusion

The average value of f(x)=arctanx f(x) = \arctan x over the interval [0,1] [0, 1] is π4ln22 \frac{\pi}{4} - \frac{\ln 2}{2} .
favg=π4ln22
\boxed{ f_{avg} = \frac{\pi}{4} - \frac{\ln 2}{2} }
Access Restricted - Please Unlock Unlock Now
favg=π4ln22
\boxed{ f_{avg} = \frac{\pi}{4} - \frac{\ln 2}{2} }
Question B.2
(Max Marks: 5)
Determine if the following series is absolutely convergent, conditionally convergent, or divergent. State the convergence test(s) you are using and show your work.

n=1(1)nnn2+1 \sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2+1}
Series
Series: Alternating Series Test
Series: Convergence/Divergence

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Analysis of Series (a): n=1(1)nnn2+1 \sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2+1}


1. Check for Convergence (Alternating Series Test):
This is an alternating series with bn=nn2+1 b_n = \frac{n}{n^2+1} . We check the conditions for the Alternating Series Test (AST).

- Positivity: bn=nn2+1>0 b_n = \frac{n}{n^2+1} > 0 for n1 n \ge 1 . Condition holds.

- Limit is zero: limnbn=limnnn2+1=limn1/n1+1/n2=01+0=0 \lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{n}{n^2+1} = \lim_{n\to\infty} \frac{1/n}{1+1/n^2} = \frac{0}{1+0} = 0 . Condition holds.

- Decreasing terms: Let f(x)=xx2+1 f(x) = \frac{x}{x^2+1} . f(x)=(x2+1)(1)(x)(2x)(x2+1)2=x2+12x2(x2+1)2=1x2(x2+1)2 f'(x) = \frac{(x^2+1)(1) - (x)(2x)}{(x^2+1)^2} = \frac{x^2+1-2x^2}{(x^2+1)^2} = \frac{1-x^2}{(x^2+1)^2} . f(x)<0 f'(x) < 0 when 1x2<0 1-x^2 < 0 , which means x2>1 x^2 > 1 , or x>1 x > 1 . So, bn b_n is decreasing for n2 n \ge 2 . Condition holds.

Since all conditions are met, the series n=1(1)nnn2+1 \sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2+1} converges by the AST.

2. Check for Absolute Convergence:
We test the convergence of n=1an=n=1nn2+1 \sum_{n=1}^{\infty} |a_n| = \sum_{n=1}^{\infty} \frac{n}{n^2+1} .
Use the Limit Comparison Test (LCT). Compare an=nn2+1 a_n = \frac{n}{n^2+1} with the harmonic series bn=1n b_n = \frac{1}{n} .
L=limnanbn=limnn/(n2+1)1/n=limnn2n2+1=limn11+1/n2=11+0=1 \begin{align*} L &= \lim_{n\to\infty} \frac{a_n}{b_n} = \lim_{n\to\infty} \frac{n/(n^2+1)}{1/n} \\ &= \lim_{n\to\infty} \frac{n^2}{n^2+1} \\ &= \lim_{n\to\infty} \frac{1}{1+1/n^2} = \frac{1}{1+0} = 1 \end{align*}
Since 0<L< 0 < L < \infty and the comparison series n=11n \sum_{n=1}^{\infty} \frac{1}{n} diverges (p-series with p=1 p=1 ), the series n=1nn2+1 \sum_{n=1}^{\infty} \frac{n}{n^2+1} also diverges by LCT.

3. Conclusion for (a):
The series converges (by AST), but it does not converge absolutely (by LCT with 1/n 1/n ).
The series n=1(1)nnn2+1 \sum_{n=1}^{\infty} \frac{(-1)^n n}{n^2+1} is conditionally convergent.
Access Restricted - Please Unlock Unlock Now
conditionally convergent
Question B.3
(Max Marks: 5)
Determine if the following series is absolutely convergent, conditionally convergent, or divergent. State the convergence test(s) you are using and show your work.

n=1(n+12n+1)n \sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1}\right)^n
Series
Series: Derivatives & Integrals
Series: Root test

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Analysis of Series (b): n=1(n+12n+1)n \sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1}\right)^n


1. Choose a Test:
The terms involve n n in both the base and the exponent. This suggests the Root Test is likely effective. The terms are positive.
2. Apply the Root Test:
Compute the limit L=limnann L = \lim_{n\to\infty} \sqrt[n]{|a_n|} .
L=limn(n+12n+1)nn=limn(n+12n+1)nn(since terms are positive)=limn(n+12n+1) \begin{align*} L &= \lim_{n\to\infty} \sqrt[n]{\left|\left(\frac{n+1}{2n+1}\right)^n\right|} \\ &= \lim_{n\to\infty} \sqrt[n]{\left(\frac{n+1}{2n+1}\right)^n} \quad (\text{since terms are positive}) \\ &= \lim_{n\to\infty} \left( \frac{n+1}{2n+1} \right) \end{align*}
Evaluate the limit by dividing numerator and denominator by n n :
L=limn1+1/n2+1/n=1+02+0=12 \begin{align*} L &= \lim_{n\to\infty} \frac{1 + 1/n}{2 + 1/n} \\ &= \frac{1 + 0}{2 + 0} = \frac{1}{2} \end{align*}
3. Conclusion for (b):
The Root Test states that if L<1 L < 1 , the series converges absolutely. Since L=1/2<1 L = 1/2 < 1 , the series converges absolutely.
The series n=1(n+12n+1)n \sum_{n=1}^{\infty} \left(\frac{n+1}{2n+1}\right)^n is absolutely convergent.
Access Restricted - Please Unlock Unlock Now
absolutely convergent
Question B.4
(Max Marks: 5)
Determine if the following series is absolutely convergent, conditionally convergent, or divergent. State the convergence test(s) you are using and show your work.

n=1tan(1/n) \sum_{n=1}^{\infty} \tan(1/n)
Series: Convergence/Divergence
Series
Series: Limit Comparison Test

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Analyze the Series Terms and Convergence Type

Let an=tan(1/n) a_n = \tan(1/n) .
For n1 n \ge 1 , we have 0<1/n1 0 < 1/n \le 1 . Since 1<π/2 1 < \pi/2 , the angle 1/n 1/n is in the first quadrant (0,π/2) (0, \pi/2) .

The tangent function is positive for angles in the first quadrant. Therefore, all terms an=tan(1/n) a_n = \tan(1/n) are positive.

Since all terms are positive, the series cannot be conditionally convergent. It is either absolutely convergent (which is the same as convergent for a positive series) or divergent.

Step 2: Choose a Convergence Test

The terms involve tan(1/n) \tan(1/n) . As n n \to \infty , the argument 1/n0 1/n \to 0 .

We know the behavior of tany \tan y for small y y : tanyy \tan y \approx y .

So, for large n n , we expect tan(1/n)1/n \tan(1/n) \approx 1/n .
This suggests comparing our series to the harmonic series 1/n \sum 1/n using the Limit Comparison Test (LCT).

Step 3: Apply the Limit Comparison Test

We compare an=tan(1/n) a_n = \tan(1/n) with the comparison series terms bn=1/n b_n = 1/n . Both an a_n and bn b_n are positive for n1 n \ge 1 .
Calculate the limit L=limnanbn L = \lim_{n\to\infty} \frac{a_n}{b_n} :
L=limntan(1/n)1/n \begin{align*}
L &= \lim_{n\to\infty} \frac{\tan(1/n)}{1/n}
\end{align*}

This limit involves the form tan(small)small \frac{\tan(\text{small})}{\text{small}} . Let y=1/n y = 1/n . As n n \to \infty , y0+ y \to 0^{+} .
L=limy0+tanyy
L = \lim_{y\to 0^{+}} \frac{\tan y}{y}

This is a standard limit in calculus. Recall that limy0sinyy=1 \lim_{y\to 0} \frac{\sin y}{y} = 1 and tany=sinycosy \tan y = \frac{\sin y}{\cos y} . So, limy0tanyy=limy0sinyycosy=limy0(sinyy1cosy)=(1)(1cos0)=111=1 \lim_{y\to 0} \frac{\tan y}{y} = \lim_{y\to 0} \frac{\sin y}{y \cos y} = \lim_{y\to 0} \left( \frac{\sin y}{y} \cdot \frac{1}{\cos y} \right) = (1) \cdot (\frac{1}{\cos 0}) = 1 \cdot \frac{1}{1} = 1 .
So, the limit is:
L=1
L = 1


Step 4: Analyze the Comparison Series

The comparison series is n=1bn=n=11n \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{1}{n} .
This is the harmonic series, which is a p-series with p=1 p = 1 .
Since p=1 p = 1 , the harmonic series n=11n \sum_{n=1}^{\infty} \frac{1}{n} diverges.

Step 5: Conclusion from LCT

We found that L=1 L = 1 , which is finite and positive (0<L< 0 < L < \infty ).
The Limit Comparison Test states that if L L is finite and positive, then both an \sum a_n and bn \sum b_n have the same convergence behavior.
Since the comparison series n=11n \sum_{n=1}^{\infty} \frac{1}{n} diverges, the original series n=1tan(1/n) \sum_{n=1}^{\infty} \tan(1/n) must also diverge.

Step 6: Final Classification

The series has positive terms and diverges.
The series n=1tan(1/n) \sum_{n=1}^{\infty} \tan(1/n) is divergent.
Access Restricted - Please Unlock Unlock Now
The series n=1tan(1/n) \sum_{n=1}^{\infty} \tan(1/n) is divergent.
Question B.5
(Max Marks: 5)
Determine if the following series is absolutely convergent, conditionally convergent, or divergent. State the convergence test(s) you are using and show your work.

n=1tan(1/n) \sum_{n=1}^{\infty} \tan(1/n)
Series: Test for Divergence
Series
Series: Convergence/Divergence

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Analysis of Series (d): n=1nsin(1/n) \sum_{n=1}^{\infty} n \sin(1/n)

Step 1: Analyze the Series Terms and Convergence Type

Let an=nsin(1/n) a_n = n \sin(1/n) .
For n1 n \ge 1 , we have n>0 n > 0 . Also, 0<1/n1 0 < 1/n \le 1 . Since 1<π 1 < \pi , the angle 1/n 1/n is in the interval (0,π] (0, \pi] . The sine function is positive in this interval (specifically, on (0,π) (0, \pi) ). Therefore, sin(1/n)>0 \sin(1/n) > 0 for n1 n \ge 1 .
Since both n n and sin(1/n) \sin(1/n) are positive, the terms an=nsin(1/n) a_n = n \sin(1/n) are positive.
This means the series cannot be conditionally convergent. It must be either absolutely convergent (same as convergent here) or divergent.

Step 2: Choose a Convergence Test

For any series, a good first step is to check the Test for Divergence. This test examines the limit of the terms as n n \to \infty .
The Test for Divergence states: If limnan0 \lim_{n\to\infty} a_n \neq 0 or the limit does not exist, then the series an \sum a_n diverges. If the limit is 0, the test is inconclusive.
We need to calculate limnan=limnnsin(1/n) \lim_{n\to\infty} a_n = \lim_{n\to\infty} n \sin(1/n) .

Step 3: Evaluate the Limit of the Terms

The limit limnnsin(1/n) \lim_{n\to\infty} n \sin(1/n) has the indeterminate form 0 \infty \cdot 0 . To evaluate it, we can rewrite the expression as a fraction:
limnnsin(1/n)=limnsin(1/n)1/n
\lim_{n\to\infty} n \sin(1/n) = \lim_{n\to\infty} \frac{\sin(1/n)}{1/n}

This limit is of the form sin(small)small \frac{\sin(\text{small})}{\text{small}} . Let y=1/n y = 1/n . As n n \to \infty , y0+ y \to 0^{+} .
L=limy0+sinyy \begin{align*}
L &= \lim_{y\to 0^{+}} \frac{\sin y}{y}
\end{align*}

This is a fundamental limit in calculus, and its value is known to be 1. ( limy0sinyy=1 \lim_{y\to 0} \frac{\sin y}{y} = 1 ).
Therefore,
limnan=limnnsin(1/n)=1
\lim_{n\to\infty} a_n = \lim_{n\to\infty} n \sin(1/n) = 1


Step 4: Apply the Test for Divergence

We found that the limit of the terms is:
limnan=1
\lim_{n\to\infty} a_n = 1

Since this limit is not equal to 0, the series fails the necessary condition for convergence.

Step 5: Conclusion

Because limnnsin(1/n)=10 \lim_{n\to\infty} n \sin(1/n) = 1 \neq 0 , the series diverges by the Test for Divergence.
The series n=1nsin(1/n) \sum_{n=1}^{\infty} n \sin(1/n) is divergent.
Access Restricted - Please Unlock Unlock Now
The series n=1nsin(1/n) \sum_{n=1}^{\infty} n \sin(1/n) is divergent.
Question B.6
(Max Marks: 10)
This two-part question explores geometric applications of integration for the function f(x)=ex+ex2 f(x) = \frac{e^x + e^{-x}}{2} . In Part (a), you will calculate the arc length of this curve over a given interval. Following that, Part (b) asks you to find the area of the surface generated when this same segment of the curve is rotated about the x-axis.
Integrals: Arc Length
Integrals: Surface Area
hyperbolic trig functions

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Recall the Arc Length Formula

The formula for the arc length L L of a curve y=f(x) y=f(x) from x=a x=a to x=b x=b is:
L=ab1+(dydx)2dx
L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx


Step 2: Find the Derivative dy/dx dy/dx

The function is y=12(ex+ex) y = \frac{1}{2}(e^x + e^{-x}) .
Calculate the derivative:
dydx=ddx(12ex+12ex)=12ex+12ex(1)=12ex12ex=exex2 \begin{align*} \frac{dy}{dx} &= \frac{d}{dx}\left(\frac{1}{2}e^x + \frac{1}{2}e^{-x}\right) \\ &= \frac{1}{2}e^x + \frac{1}{2}e^{-x}(-1) \\ &= \frac{1}{2}e^x - \frac{1}{2}e^{-x} \\ &= \frac{e^x - e^{-x}}{2} \end{align*}
(This is sinhx \sinh x ).

Step 3: Calculate 1+(dy/dx)2 1 + (dy/dx)^2

First, square the derivative:
(dydx)2=(exex2)2=(exex)24=(ex)22(ex)(ex)+(ex)24=e2x2e0+e2x4=e2x2+e2x4 \begin{align*} \left(\frac{dy}{dx}\right)^2 &= \left(\frac{e^x - e^{-x}}{2}\right)^2 \\ &= \frac{(e^x - e^{-x})^2}{4} \\ &= \frac{(e^x)^2 - 2(e^x)(e^{-x}) + (e^{-x})^2}{4} \\ &= \frac{e^{2x} - 2e^0 + e^{-2x}}{4} \\ &= \frac{e^{2x} - 2 + e^{-2x}}{4} \end{align*}
Now, add 1:
1+(dydx)2=1+e2x2+e2x4=44+e2x2+e2x4=4+e2x2+e2x4=e2x+2+e2x4 \begin{align*} 1 + \left(\frac{dy}{dx}\right)^2 &= 1 + \frac{e^{2x} - 2 + e^{-2x}}{4} \\ &= \frac{4}{4} + \frac{e^{2x} - 2 + e^{-2x}}{4} \\ &= \frac{4 + e^{2x} - 2 + e^{-2x}}{4} \\ &= \frac{e^{2x} + 2 + e^{-2x}}{4} \end{align*}
Recognize that the numerator is a perfect square: e2x+2+e2x=(ex+ex)2 e^{2x} + 2 + e^{-2x} = (e^x + e^{-x})^2 . Alternatively, using hyperbolic functions: (dydx)2=sinh2x (\frac{dy}{dx})^2 = \sinh^2 x , so 1+(dydx)2=1+sinh2x=cosh2x 1 + (\frac{dy}{dx})^2 = 1 + \sinh^2 x = \cosh^2 x .
So, we have:
1+(dydx)2=(ex+ex)24=(ex+ex2)2(=cosh2x) \begin{align*} 1 + \left(\frac{dy}{dx}\right)^2 &= \frac{(e^x + e^{-x})^2}{4} \\ &= \left(\frac{e^x + e^{-x}}{2}\right)^2 \quad (= \cosh^2 x) \end{align*}

Step 4: Find 1+(dy/dx)2 \sqrt{1 + (dy/dx)^2}

1+(dydx)2=(ex+ex2)2=ex+ex2 \begin{align*} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} &= \sqrt{\left(\frac{e^x + e^{-x}}{2}\right)^2} \\ &= \left|\frac{e^x + e^{-x}}{2}\right| \end{align*}
Since ex+ex2 \frac{e^x + e^{-x}}{2} (coshx \cosh x ) is always positive, the absolute value is not needed.
1+(dydx)2=ex+ex2(=coshx) \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \frac{e^x + e^{-x}}{2} \quad (= \cosh x)

Step 5: Set Up and Evaluate the Arc Length Integral

The arc length L L from x=0 x=0 to x=ln2 x=\ln 2 is:
L=0ln21+(dydx)2dx=0ln2(ex+ex2)dx=120ln2(ex+ex)dx \begin{align*} L &= \int_{0}^{\ln 2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \\ &= \int_{0}^{\ln 2} \left(\frac{e^x + e^{-x}}{2}\right) \, dx \\ &= \frac{1}{2} \int_{0}^{\ln 2} (e^x + e^{-x}) \, dx \end{align*}
Find the antiderivative:
(ex+ex)dx=ex+ex1+C=exex+C \begin{align*} \int (e^x + e^{-x}) \, dx &= e^x + \frac{e^{-x}}{-1} + C \\ &= e^x - e^{-x} + C \end{align*}
(Note: the antiderivative is 2sinhx 2 \sinh x ).
Now evaluate the definite integral:
L=12[exex]0ln2 \begin{align*} L &= \frac{1}{2} \left[ e^x - e^{-x} \right]_{0}^{\ln 2} \end{align*}
Let F(x)=exex F(x) = e^x - e^{-x} . We need L=12(F(ln2)F(0)) L = \frac{1}{2} (F(\ln 2) - F(0)) .
Evaluate F(ln2) F(\ln 2) :
F(ln2)=eln2eln2=eln2eln(21)=221=212=32 \begin{align*} F(\ln 2) &= e^{\ln 2} - e^{-\ln 2} \\ &= e^{\ln 2} - e^{\ln(2^{-1})} \\ &= 2 - 2^{-1} \\ &= 2 - \frac{1}{2} \\ &= \frac{3}{2} \end{align*}
Evaluate F(0) F(0) :
F(0)=e0e0=11=0 \begin{align*} F(0) &= e^0 - e^{-0} \\ &= 1 - 1 \\ &= 0 \end{align*}
Calculate the arc length:
L=12(F(ln2)F(0))=12(320)=34 \begin{align*} L &= \frac{1}{2} ( F(\ln 2) - F(0) ) \\ &= \frac{1}{2} \left( \frac{3}{2} - 0 \right) \\ &= \frac{3}{4} \end{align*}

Step 6: Conclusion for Part (a)

The arc length of the curve y=ex+ex2 y = \frac{e^x + e^{-x}}{2} from x=0 x=0 to x=ln2 x=\ln 2 is 34 \frac{3}{4} .
L=34
\boxed{ L = \frac{3}{4} }
Access Restricted - Please Unlock Unlock Now
L=34
\boxed{ L = \frac{3}{4} }
6. a)
(Max Marks: 10)
Find the length of the curve y=ex+ex2 y = \frac{e^x + e^{-x}}{2} for 0xln2 0 \le x \le \ln 2 .
hyperbolic trig functions
Integrals: Arc Length

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Recall the Arc Length Formula

The formula for the arc length L L of a curve y=f(x) y=f(x) from x=a x=a to x=b x=b is:
L=ab1+(dydx)2dx
L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx


Step 2: Find the Derivative dy/dx dy/dx

The function is y=12(ex+ex) y = \frac{1}{2}(e^x + e^{-x}) .
Calculate the derivative:
dydx=ddx(12ex+12ex)=12ex+12ex(1)=12ex12ex=exex2 \begin{align*} \frac{dy}{dx} &= \frac{d}{dx}\left(\frac{1}{2}e^x + \frac{1}{2}e^{-x}\right) \\ &= \frac{1}{2}e^x + \frac{1}{2}e^{-x}(-1) \\ &= \frac{1}{2}e^x - \frac{1}{2}e^{-x} \\ &= \frac{e^x - e^{-x}}{2} \end{align*}
(This is sinhx \sinh x ).

Step 3: Calculate 1+(dy/dx)2 1 + (dy/dx)^2

First, square the derivative:
(dydx)2=(exex2)2=(exex)24=(ex)22(ex)(ex)+(ex)24=e2x2e0+e2x4=e2x2+e2x4 \begin{align*} \left(\frac{dy}{dx}\right)^2 &= \left(\frac{e^x - e^{-x}}{2}\right)^2 \\ &= \frac{(e^x - e^{-x})^2}{4} \\ &= \frac{(e^x)^2 - 2(e^x)(e^{-x}) + (e^{-x})^2}{4} \\ &= \frac{e^{2x} - 2e^0 + e^{-2x}}{4} \\ &= \frac{e^{2x} - 2 + e^{-2x}}{4} \end{align*}
Now, add 1:
1+(dydx)2=1+e2x2+e2x4=44+e2x2+e2x4=4+e2x2+e2x4=e2x+2+e2x4 \begin{align*} 1 + \left(\frac{dy}{dx}\right)^2 &= 1 + \frac{e^{2x} - 2 + e^{-2x}}{4} \\ &= \frac{4}{4} + \frac{e^{2x} - 2 + e^{-2x}}{4} \\ &= \frac{4 + e^{2x} - 2 + e^{-2x}}{4} \\ &= \frac{e^{2x} + 2 + e^{-2x}}{4} \end{align*}
Recognize that the numerator is a perfect square: e2x+2+e2x=(ex+ex)2 e^{2x} + 2 + e^{-2x} = (e^x + e^{-x})^2 . Alternatively, using hyperbolic functions: (dydx)2=sinh2x (\frac{dy}{dx})^2 = \sinh^2 x , so 1+(dydx)2=1+sinh2x=cosh2x 1 + (\frac{dy}{dx})^2 = 1 + \sinh^2 x = \cosh^2 x .
So, we have:
1+(dydx)2=(ex+ex)24=(ex+ex2)2(=cosh2x) \begin{align*} 1 + \left(\frac{dy}{dx}\right)^2 &= \frac{(e^x + e^{-x})^2}{4} \\ &= \left(\frac{e^x + e^{-x}}{2}\right)^2 \quad (= \cosh^2 x) \end{align*}

Step 4: Find 1+(dy/dx)2 \sqrt{1 + (dy/dx)^2}

1+(dydx)2=(ex+ex2)2=ex+ex2 \begin{align*} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} &= \sqrt{\left(\frac{e^x + e^{-x}}{2}\right)^2} \\ &= \left|\frac{e^x + e^{-x}}{2}\right| \end{align*}
Since ex+ex2 \frac{e^x + e^{-x}}{2} (coshx \cosh x ) is always positive, the absolute value is not needed.
1+(dydx)2=ex+ex2(=coshx) \sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \frac{e^x + e^{-x}}{2} \quad (= \cosh x)

Step 5: Set Up and Evaluate the Arc Length Integral

The arc length L L from x=0 x=0 to x=ln2 x=\ln 2 is:
L=0ln21+(dydx)2dx=0ln2(ex+ex2)dx=120ln2(ex+ex)dx \begin{align*} L &= \int_{0}^{\ln 2} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \\ &= \int_{0}^{\ln 2} \left(\frac{e^x + e^{-x}}{2}\right) \, dx \\ &= \frac{1}{2} \int_{0}^{\ln 2} (e^x + e^{-x}) \, dx \end{align*}
Find the antiderivative:
(ex+ex)dx=ex+ex1+C=exex+C \begin{align*} \int (e^x + e^{-x}) \, dx &= e^x + \frac{e^{-x}}{-1} + C \\ &= e^x - e^{-x} + C \end{align*}
(Note: the antiderivative is 2sinhx 2 \sinh x ).
Now evaluate the definite integral:
L=12[exex]0ln2 \begin{align*} L &= \frac{1}{2} \left[ e^x - e^{-x} \right]_{0}^{\ln 2} \end{align*}
Let F(x)=exex F(x) = e^x - e^{-x} . We need L=12(F(ln2)F(0)) L = \frac{1}{2} (F(\ln 2) - F(0)) .
Evaluate F(ln2) F(\ln 2) :
F(ln2)=eln2eln2=eln2eln(21)=221=212=32 \begin{align*} F(\ln 2) &= e^{\ln 2} - e^{-\ln 2} \\ &= e^{\ln 2} - e^{\ln(2^{-1})} \\ &= 2 - 2^{-1} \\ &= 2 - \frac{1}{2} \\ &= \frac{3}{2} \end{align*}
Evaluate F(0) F(0) :
F(0)=e0e0=11=0 \begin{align*} F(0) &= e^0 - e^{-0} \\ &= 1 - 1 \\ &= 0 \end{align*}
Calculate the arc length:
L=12(F(ln2)F(0))=12(320)=34 \begin{align*} L &= \frac{1}{2} ( F(\ln 2) - F(0) ) \\ &= \frac{1}{2} \left( \frac{3}{2} - 0 \right) \\ &= \frac{3}{4} \end{align*}

Step 6: Conclusion for Part (a)

The arc length of the curve y=ex+ex2 y = \frac{e^x + e^{-x}}{2} from x=0 x=0 to x=ln2 x=\ln 2 is 34 \frac{3}{4} .
L=34
\boxed{ L = \frac{3}{4} }
Access Restricted - Please Unlock Unlock Now
L=34
\boxed{ L = \frac{3}{4} }
6. b)
(Max Marks: 10)
Find the area of the surface obtained by rotating the curve y=ex+ex2 y = \frac{e^x + e^{-x}}{2} for 0xln2 0 \le x \le \ln 2 around the x-axis.
hyperbolic trig functions
Integrals: Surface Area

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Recall the Surface Area Formula

The formula for the area S S of a surface generated by rotating the curve y=f(x) y=f(x) from x=a x=a to x=b x=b about the x-axis is:
S=ab2πy1+(dydx)2dx
S = \int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx

We need y0 y \ge 0 on the interval, which holds for y=ex+ex2 y = \frac{e^x + e^{-x}}{2} .

Step 2: Use Components from Part A

From the analysis in Part A (Arc Length), we have:
- The function: y=ex+ex2 y = \frac{e^x + e^{-x}}{2} (=coshx = \cosh x )
- The square root term: 1+(dy/dx)2=ex+ex2 \sqrt{1 + (dy/dx)^2} = \frac{e^x + e^{-x}}{2} (=coshx = \cosh x )
- The interval: [a,b]=[0,ln2] [a, b] = [0, \ln 2]

Step 3: Set Up the Surface Area Integral

Substitute these components into the surface area formula:
S=0ln22π(ex+ex2)(ex+ex2)dx=0ln22π(ex+ex)24dx=2π40ln2(ex+ex)2dx=π20ln2(ex+ex)2dx \begin{align*}
S &= \int_{0}^{\ln 2} 2\pi \left(\frac{e^x + e^{-x}}{2}\right) \left(\frac{e^x + e^{-x}}{2}\right) \, dx \\
&= \int_{0}^{\ln 2} 2\pi \frac{(e^x + e^{-x})^2}{4} \, dx \\
&= \frac{2\pi}{4} \int_{0}^{\ln 2} (e^x + e^{-x})^2 \, dx \\
&= \frac{\pi}{2} \int_{0}^{\ln 2} (e^x + e^{-x})^2 \, dx
\end{align*}

Alternatively, using hyperbolic notation, this is S=0ln22πcoshx(coshx)dx=2π0ln2cosh2xdx S = \int_{0}^{\ln 2} 2\pi \cosh x (\cosh x) dx = 2\pi \int_{0}^{\ln 2} \cosh^2 x dx .

Step 4: Expand and Simplify the Integrand

Expand the term (ex+ex)2 (e^x + e^{-x})^2 :
(ex+ex)2=(ex)2+2(ex)(ex)+(ex)2=e2x+2e0+e2x=e2x+2+e2x \begin{align*}
(e^x + e^{-x})^2 &= (e^x)^2 + 2(e^x)(e^{-x}) + (e^{-x})^2 \\ &= e^{2x} + 2e^0 + e^{-2x} \\ &= e^{2x} + 2 + e^{-2x}
\end{align*}

Substitute this back into the integral expression:
S=π20ln2(e2x+2+e2x)dx
S = \frac{\pi}{2} \int_{0}^{\ln 2} (e^{2x} + 2 + e^{-2x}) \, dx

Using the identity cosh2x=1+cosh(2x)2 \cosh^2 x = \frac{1 + \cosh(2x)}{2} , the integral 2πcosh2xdx 2\pi \int \cosh^2 x dx becomes π(1+cosh(2x))dx \pi \int (1 + \cosh(2x)) dx , which leads to the same antiderivative after integrating cosh(2x) \cosh(2x) .


Step 5: Evaluate the Definite Integral

Find the antiderivative of e2x+2+e2x e^{2x} + 2 + e^{-2x} :
(e2x+2+e2x)dx=e2x2+2x+e2x2+C=12e2x+2x12e2x+C \begin{align*} \int (e^{2x} + 2 + e^{-2x}) \, dx &= \frac{e^{2x}}{2} + 2x + \frac{e^{-2x}}{-2} + C \\ &= \frac{1}{2}e^{2x} + 2x - \frac{1}{2}e^{-2x} + C \end{align*}
Now evaluate the definite integral using the limits 0 0 and ln2 \ln 2 . Let F(x)=12e2x+2x12e2x F(x) = \frac{1}{2}e^{2x} + 2x - \frac{1}{2}e^{-2x} . We need S=π2[F(x)]0ln2=π2(F(ln2)F(0)) S = \frac{\pi}{2} [F(x)]_{0}^{\ln 2} = \frac{\pi}{2} (F(\ln 2) - F(0)) .


Evaluate F(ln2) F(\ln 2) :
e2ln2=eln(22)=4e2ln2=eln(22)=22=14 \begin{align*} e^{2\ln 2} &= e^{\ln(2^2)} = 4 \\ e^{-2\ln 2} &= e^{\ln(2^{-2})} = 2^{-2} = \frac{1}{4} \end{align*}
F(ln2)=12(4)+2(ln2)12(14)=2+2ln218=16818+2ln2=158+2ln2 \begin{align*} F(\ln 2) &= \frac{1}{2}(4) + 2(\ln 2) - \frac{1}{2}\left(\frac{1}{4}\right) \\ &= 2 + 2\ln 2 - \frac{1}{8} \\ &= \frac{16}{8} - \frac{1}{8} + 2\ln 2 \\ &= \frac{15}{8} + 2\ln 2 \end{align*}
Evaluate F(0) F(0) :
F(0)=12e0+2(0)12e0=12(1)+012(1)=1212=0 \begin{align*} F(0) &= \frac{1}{2}e^{0} + 2(0) - \frac{1}{2}e^{0} \\ &= \frac{1}{2}(1) + 0 - \frac{1}{2}(1) \\ &= \frac{1}{2} - \frac{1}{2} = 0 \end{align*}
Calculate the difference and the surface area:
S=π2(F(ln2)F(0))=π2[(158+2ln2)0]=π2(158+2ln2)=15π16+πln2 \begin{align*} S &= \frac{\pi}{2} ( F(\ln 2) - F(0) ) \\ &= \frac{\pi}{2} \left[ \left( \frac{15}{8} + 2\ln 2 \right) - 0 \right] \\ &= \frac{\pi}{2} \left( \frac{15}{8} + 2\ln 2 \right) \\ &= \frac{15\pi}{16} + \pi \ln 2 \end{align*}

Step 6: Conclusion for Part (b)

The area of the surface obtained by rotating the curve y=ex+ex2 y = \frac{e^x + e^{-x}}{2} from x=0 x=0 to x=ln2 x=\ln 2 about the x-axis is 15π16+πln2 \frac{15\pi}{16} + \pi \ln 2 .
S=15π16+πln2
\boxed{ S = \frac{15\pi}{16} + \pi \ln 2 }
Access Restricted - Please Unlock Unlock Now
S=15π16+πln2
\boxed{ S = \frac{15\pi}{16} + \pi \ln 2 }
Question B.7
(Max Marks: 10)
Evaluate the definite integral 01/2x3(1+4x2)3/2dx \int_{0}^{1/\sqrt{2}} \frac{x^3}{(1+4x^2)^{3/2}} dx .
Integrals: Trig Substitution
integrals
Integrals: u-substitution

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Initial Algebraic Substitution


The term (1+4x2)3/2 (1+4x^2)^{3/2} involves 4x2=(2x)2 4x^2 = (2x)^2 .

This suggests a preliminary u-substitution to simplify the expression before applying trigonometric substitution.

Let u=2x u = 2x .

Then du=2dx du = 2 dx , which means dx=12du dx = \frac{1}{2} du .

Also, solve for x x : x=u/2 x = u/2 , so x3=u3/8 x^3 = u^3 / 8 .

The term 1+4x2 1+4x^2 becomes 1+u2 1+u^2 .

Now, change the limits of integration:
- When x=0 x=0 , u=2(0)=0 u = 2(0) = 0 .
- When x=1/2 x=1/\sqrt{2} , u=2(1/2)=2/2=2 u = 2(1/\sqrt{2}) = 2/\sqrt{2} = \sqrt{2} .

Substitute these into the integral:
01/2x3(1+4x2)3/2dx=02u3/8(1+u2)3/2(12du)=11602u3(1+u2)3/2du \begin{align*} &\int_{0}^{1/\sqrt{2}} \frac{x^3}{(1+4x^2)^{3/2}} dx \\ &= \int_{0}^{\sqrt{2}} \frac{u^3 / 8}{(1+u^2)^{3/2}} \left( \frac{1}{2} du \right) \\ &= \frac{1}{16} \int_{0}^{\sqrt{2}} \frac{u^3}{(1+u^2)^{3/2}} \, du \end{align*}

Step 2: Trigonometric Substitution


The integral now contains the term (1+u2)3/2 (1+u^2)^{3/2} .

This form (a2+u2)3/2 (a^2+u^2)^{3/2} (with a=1 a=1 ) suggests a trigonometric substitution.

Let u=tanθ u = \tan \theta . (Here a=1 a=1 ).

Then du=sec2θdθ du = \sec^2 \theta \, d\theta .

Substitute into the term (1+u2)3/2 (1+u^2)^{3/2} :
(1+u2)3/2=(1+tan2θ)3/2=(sec2θ)3/2=(sec2θ)3=secθ3 \begin{align*} (1+u^2)^{3/2} &= (1+\tan^2 \theta)^{3/2} \\ &= (\sec^2 \theta)^{3/2} \\ &= (\sqrt{\sec^2 \theta})^3 \\ &= |\sec \theta|^3 \end{align*}
Now, change the limits of integration from u u to θ \theta :
- When u=0 u=0 , tanθ=0 \tan \theta = 0 . Choose θ=0 \theta = 0 .
- When u=2 u=\sqrt{2} , tanθ=2 \tan \theta = \sqrt{2} . Let θ1=arctan(2) \theta_1 = \arctan(\sqrt{2}) .

For θ \theta between 0 0 and θ1=arctan(2) \theta_1 = \arctan(\sqrt{2}) (which is in the first quadrant), secθ \sec \theta is positive. So secθ3=sec3θ |\sec \theta|^3 = \sec^3 \theta .

Substitute u=tanθ u = \tan \theta , du=sec2θdθ du = \sec^2 \theta \, d\theta , (1+u2)3/2=sec3θ (1+u^2)^{3/2} = \sec^3 \theta , and the new limits into the integral from Step 1:
11602u3(1+u2)3/2du=1160θ1tan3θsec3θ(sec2θdθ)=1160θ1tan3θsecθdθ \begin{align*} &\frac{1}{16} \int_{0}^{\sqrt{2}} \frac{u^3}{(1+u^2)^{3/2}} \, du \\ &= \frac{1}{16} \int_{0}^{\theta_1} \frac{\tan^3 \theta}{\sec^3 \theta} (\sec^2 \theta \, d\theta) \\ &= \frac{1}{16} \int_{0}^{\theta_1} \frac{\tan^3 \theta}{\sec \theta} \, d\theta \end{align*}
Where θ1=arctan(2) \theta_1 = \arctan(\sqrt{2}) .

Step 3: Simplify and Integrate the Trigonometric Integral


Simplify the integrand:
tan3θsecθ=sin3θ/cos3θ1/cosθ=sin3θcos3θcosθ=sin3θcos2θ=sin2θsinθcos2θ=(1cos2θ)sinθcos2θ \begin{align*} \frac{\tan^3 \theta}{\sec \theta} &= \frac{\sin^3 \theta / \cos^3 \theta}{1 / \cos \theta} \\ &= \frac{\sin^3 \theta}{\cos^3 \theta} \cdot \cos \theta \\ &= \frac{\sin^3 \theta}{\cos^2 \theta} \\ &= \frac{\sin^2 \theta \cdot \sin \theta}{\cos^2 \theta} \\ &= \frac{(1 - \cos^2 \theta) \sin \theta}{\cos^2 \theta} \end{align*}
The integral becomes:
1160θ1(1cos2θ)sinθcos2θdθ \frac{1}{16} \int_{0}^{\theta_1} \frac{(1 - \cos^2 \theta) \sin \theta}{\cos^2 \theta} \, d\theta
This suggests a substitution. Let w=cosθ w = \cos \theta . Then dw=sinθdθ dw = -\sin \theta \, d\theta .

Change limits from θ \theta to w w :
- When θ=0 \theta=0 , w=cos0=1 w = \cos 0 = 1 .

- When θ=θ1=arctan(2) \theta=\theta_1 = \arctan(\sqrt{2}) . To find cosθ1 \cos \theta_1 , consider a right triangle where tanθ1=2/1 \tan \theta_1 = \sqrt{2}/1 . Opposite side = 2 \sqrt{2} , adjacent side = 1.

Hypotenuse = 12+(2)2=1+2=3 \sqrt{1^2 + (\sqrt{2})^2} = \sqrt{1+2} = \sqrt{3} . So, cosθ1=adjhyp=13 \cos \theta_1 = \frac{\text{adj}}{\text{hyp}} = \frac{1}{\sqrt{3}} . The upper limit is w=1/3 w = 1/\sqrt{3} .

Substitute w=cosθ w = \cos \theta , sinθdθ=dw \sin \theta \, d\theta = -dw :
=11611/31w2w2(dw)=1161/311w2w2dw(Flip limits and sign)=1161/31(1w2w2w2)dw=1161/31(w21)dw \begin{align*} &= \frac{1}{16} \int_{1}^{1/\sqrt{3}} \frac{1 - w^2}{w^2} (-dw) \\ &= \frac{1}{16} \int_{1/\sqrt{3}}^{1} \frac{1 - w^2}{w^2} \, dw \quad (\text{Flip limits and sign}) \\ &= \frac{1}{16} \int_{1/\sqrt{3}}^{1} \left( \frac{1}{w^2} - \frac{w^2}{w^2} \right) \, dw \\ &= \frac{1}{16} \int_{1/\sqrt{3}}^{1} (w^{-2} - 1) \, dw \end{align*}
Integrate with respect to w w :
=116[w11w]1/31=116[1ww]1/31 \begin{align*} &= \frac{1}{16} \left[ \frac{w^{-1}}{-1} - w \right]_{1/\sqrt{3}}^{1} \\ &= \frac{1}{16} \left[ -\frac{1}{w} - w \right]_{1/\sqrt{3}}^{1} \end{align*}

Step 4: Evaluate the Definite Integral


Apply the limits for w w : Let F(w)=1ww F(w) = -\frac{1}{w} - w . We need 116(F(1)F(1/3)) \frac{1}{16}(F(1) - F(1/\sqrt{3})) .
F(1)=111=11=2 \begin{align*} F(1) &= -\frac{1}{1} - 1 \\ &= -1 - 1 \\ &= -2 \end{align*}
F(1/3)=11/313=313=3313=43 \begin{align*} F(1/\sqrt{3}) &= -\frac{1}{1/\sqrt{3}} - \frac{1}{\sqrt{3}} \\ &= -\sqrt{3} - \frac{1}{\sqrt{3}} \\ &= -\frac{3}{\sqrt{3}} - \frac{1}{\sqrt{3}} \\ &= -\frac{4}{\sqrt{3}} \end{align*}
Now calculate the result:
=116[F(1)F(1/3)]=116[(2)(43)]=116[2+43]=216+4163=18+143 \begin{align*} &= \frac{1}{16} [ F(1) - F(1/\sqrt{3}) ] \\ &= \frac{1}{16} \left[ (-2) - \left( -\frac{4}{\sqrt{3}} \right) \right] \\ &= \frac{1}{16} \left[ -2 + \frac{4}{\sqrt{3}} \right] \\ &= \frac{-2}{16} + \frac{4}{16\sqrt{3}} \\ &= -\frac{1}{8} + \frac{1}{4\sqrt{3}} \end{align*}
Rationalize the denominator: 143=3433=312 \frac{1}{4\sqrt{3}} = \frac{\sqrt{3}}{4\sqrt{3}\sqrt{3}} = \frac{\sqrt{3}}{12} .
=31218 \begin{align*} &= \frac{\sqrt{3}}{12} - \frac{1}{8} \end{align*}
Find a common denominator (24):
=2324324=23324 \begin{align*} &= \frac{2\sqrt{3}}{24} - \frac{3}{24} \\ &= \frac{2\sqrt{3} - 3}{24} \end{align*}

Step 5: Conclusion


The value of the definite integral is 23324 \frac{2\sqrt{3} - 3}{24} .
01/2x3(1+4x2)3/2dx=23324
\boxed{ \int_{0}^{1/\sqrt{2}} \frac{x^3}{(1+4x^2)^{3/2}} dx = \frac{2\sqrt{3} - 3}{24} }
Access Restricted - Please Unlock Unlock Now
01/2x3(1+4x2)3/2dx=23324
\boxed{ \int_{0}^{1/\sqrt{2}} \frac{x^3}{(1+4x^2)^{3/2}} dx = \frac{2\sqrt{3} - 3}{24} }
Question B.8
(Max Marks: 10)
Find the volume of the solid resulting from rotating the region enclosed by the curves y=4x2 y = 4-x^2 and y=x+2 y = x+2 about the x-axis, using the method of discs/washers.
integrals
Volume: Disks/Rings Method

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Find the Points of Intersection


First, we need to find the x-values where the two curves intersect to determine the limits of integration.

Set the y-values equal:
4x2=x+20=x2+x+240=x2+x2 \begin{align*} 4 - x^2 &= x + 2 \\ 0 &= x^2 + x + 2 - 4 \\ 0 &= x^2 + x - 2 \end{align*}

Factor the quadratic equation:
0=(x+2)(x1) 0 = (x+2)(x-1)

The curves intersect at x=2 x = -2 and x=1 x = 1 .

These will be our limits of integration, a=2 a = -2 and b=1 b = 1 .

Step 2: Determine Outer and Inner Radii


We are rotating the region about the x-axis (y=0 y=0 ) using the method of washers.

The volume is given by:
V=abπ([R(x)]2[r(x)]2)dx V = \int_{a}^{b} \pi \left( [R(x)]^2 - [r(x)]^2 \right) \, dx

Where R(x) R(x) is the outer radius (the function farther from the axis of rotation) and r(x) r(x) is the inner radius (the function closer to the axis of rotation).

We need to determine which function, y1=4x2 y_1 = 4-x^2 or y2=x+2 y_2 = x+2 , is larger on the interval [2,1] [-2, 1] .

Let's test a point inside the interval, for example, x=0 x=0 :
- y1(0)=402=4 y_1(0) = 4 - 0^2 = 4
- y2(0)=0+2=2 y_2(0) = 0 + 2 = 2

Since y1(0)>y2(0) y_1(0) > y_2(0) , the curve y=4x2 y = 4-x^2 is farther from the x-axis than y=x+2 y = x+2 on the interval [2,1] [-2, 1] .

Also, both functions are non-negative on [2,1] [-2, 1] .

So, the outer radius is R(x)=4x2 R(x) = 4-x^2 and the inner radius is r(x)=x+2 r(x) = x+2 .

Step 3: Set Up the Volume Integral


Using the washer method formula with a=2,b=1,R(x)=4x2,r(x)=x+2 a=-2, b=1, R(x)=4-x^2, r(x)=x+2 :
V=21π((4x2)2(x+2)2)dx \begin{align*} V &= \int_{-2}^{1} \pi \left( (4-x^2)^2 - (x+2)^2 \right) \, dx \end{align*}

Step 4: Expand and Simplify the Integrand


Expand the squared terms:
(4x2)2=168x2+x4 (4-x^2)^2 = 16 - 8x^2 + x^4
(x+2)2=x2+4x+4 (x+2)^2 = x^2 + 4x + 4

Substitute these into the integrand (inside the integral):
(4x2)2(x+2)2=(168x2+x4)(x2+4x+4)=168x2+x4x24x4=x49x24x+12 \begin{align*} & (4-x^2)^2 - (x+2)^2 \\ &= (16 - 8x^2 + x^4) - (x^2 + 4x + 4) \\ &= 16 - 8x^2 + x^4 - x^2 - 4x - 4 \\ &= x^4 - 9x^2 - 4x + 12 \end{align*}

So the volume integral becomes:
V=π21(x49x24x+12)dx V = \pi \int_{-2}^{1} (x^4 - 9x^2 - 4x + 12) \, dx
Be careful with signs when subtracting the second squared term.

Step 5: Evaluate the Definite Integral


Find the antiderivative of the polynomial integrand:
(x49x24x+12)dx=x559x334x22+12x+C=x553x32x2+12x+C \begin{align*} & \int (x^4 - 9x^2 - 4x + 12) \, dx \\ &= \frac{x^5}{5} - 9\frac{x^3}{3} - 4\frac{x^2}{2} + 12x + C \\ &= \frac{x^5}{5} - 3x^3 - 2x^2 + 12x + C \end{align*}

Now evaluate the definite integral using the limits 2 -2 and 1 1 . Let F(x)=x553x32x2+12x F(x) = \frac{x^5}{5} - 3x^3 - 2x^2 + 12x .

We need V=π(F(1)F(2)) V = \pi ( F(1) - F(-2) ) .

Evaluate F(1) F(1) :
F(1)=1553(1)32(1)2+12(1)=1532+12=15+7=15+355=365 \begin{align*} F(1) &= \frac{1^5}{5} - 3(1)^3 - 2(1)^2 + 12(1) \\ &= \frac{1}{5} - 3 - 2 + 12 \\ &= \frac{1}{5} + 7 \\ &= \frac{1}{5} + \frac{35}{5} \\ &= \frac{36}{5} \end{align*}

Evaluate F(2) F(-2) :
F(2)=(2)553(2)32(2)2+12(2)=3253(8)2(4)24=325+24824=3258=325405=725 \begin{align*} F(-2) &= \frac{(-2)^5}{5} - 3(-2)^3 - 2(-2)^2 + 12(-2) \\ &= \frac{-32}{5} - 3(-8) - 2(4) - 24 \\ &= -\frac{32}{5} + 24 - 8 - 24 \\ &= -\frac{32}{5} - 8 \\ &= -\frac{32}{5} - \frac{40}{5} \\ &= -\frac{72}{5} \end{align*}

Calculate the difference:
F(1)F(2)=365(725)=365+725=1085 \begin{align*} F(1) - F(-2) &= \frac{36}{5} - \left(-\frac{72}{5}\right) \\ &= \frac{36}{5} + \frac{72}{5} \\ &= \frac{108}{5} \end{align*}

Finally, calculate the volume:
V=π(F(1)F(2))=π(1085)=108π5 \begin{align*} V &= \pi ( F(1) - F(-2) ) \\ &= \pi \left( \frac{108}{5} \right) \\ &= \frac{108\pi}{5} \end{align*}

Step 6: Conclusion for Part (a)


The volume of the solid obtained by rotating the region about the x-axis is 108π5 \frac{108\pi}{5} .
V=108π5
\boxed{ V = \frac{108\pi}{5} }
Access Restricted - Please Unlock Unlock Now
V=108π5
\boxed{ V = \frac{108\pi}{5} }
Question B.9
(Max Marks: 10)
Find the volume of the solid resulting from rotating the region enclosed by the curves y=4x2 y = 4-x^2 and y=x+2 y = x+2 about the x-axis, using the method of cylindrical shells.
Volume: Cylindrical Shells
integrals
Integrals: u-substitution

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Question: Find the volume of the solid resulting from rotating the region enclosed by the curves y=4x2 y = 4-x^2 and y=x+2 y = x+2 about the x-axis, using the method of cylindrical shells.

Step 1: Recall Formula for Cylindrical Shells (Rotation about x-axis)


When rotating a region about the x-axis and integrating with respect to y y , the Method of Cylindrical Shells uses the formula:
V=cd2π(radius)(height)dy V = \int_{c}^{d} 2\pi (\text{radius}) (\text{height}) \, dy

Here:
- The integration is over the y-interval [c,d] [c, d] covering the region.

- The radius of a shell at height y y is y y .

- The height (or width) of the shell is the horizontal distance across the region at height y y , i.e., xright(y)xleft(y) x_{right}(y) - x_{left}(y) .

Step 2: Express Curves as x(y) x(y) and Find y-Limits


We need to rewrite the boundary curves y=4x2 y = 4-x^2 and y=x+2 y = x+2 as functions of y y .

Line: y=x+2    xline=y2 y = x+2 \implies x_{line} = y-2 .

Parabola: y=4x2    x2=4y    x=±4y y = 4-x^2 \implies x^2 = 4-y \implies x = \pm \sqrt{4-y} .

The right branch is xparab,R=4y x_{parab, R} = \sqrt{4-y} .

The left branch is xparab,L=4y x_{parab, L} = -\sqrt{4-y} .

The intersection points found in Part A were (2,0) (-2, 0) and (1,3) (1, 3) .

The lowest y-value in the region is y=0 y=0 .

The highest y-value is y=4 y=4 , the vertex of the parabola.

We need to consider the shell height xrightxleft x_{right} - x_{left} across the range of y-values from 0 to 4.

- For y y between 0 and 3, the right boundary is the parabola (x=4y x = \sqrt{4-y} ) and the left boundary is the line (x=y2 x = y-2 ). Height h1(y)=4y(y2) h_1(y) = \sqrt{4-y} - (y-2) .

- For y y between 3 and 4, the region is bounded by the parabola branches. The right boundary is x=4y x = \sqrt{4-y} and the left boundary is x=4y x = -\sqrt{4-y} . Height h2(y)=4y(4y)=24y h_2(y) = \sqrt{4-y} - (-\sqrt{4-y}) = 2\sqrt{4-y} .

Because the function defining the left boundary changes at y=3 y=3 , we must split the integral into two parts.

The y-limits are c=0 c=0 and d=4 d=4 , but we split at y=3 y=3 .
V=032πyh1(y)dy+342πyh2(y)dy V = \int_{0}^{3} 2\pi y \cdot h_1(y) \, dy + \int_{3}^{4} 2\pi y \cdot h_2(y) \, dy

Step 3: Set Up the Integrals


Substitute the expressions for h1(y) h_1(y) and h2(y) h_2(y) :
V=032πy(4yy+2)dy+342πy(24y)dy V = \int_{0}^{3} 2\pi y (\sqrt{4-y} - y + 2) \, dy + \int_{3}^{4} 2\pi y (2\sqrt{4-y}) \, dy
V=2π03(y4yy2+2y)dy+4π34y4ydy V = 2\pi \int_{0}^{3} (y\sqrt{4-y} - y^2 + 2y) \, dy + 4\pi \int_{3}^{4} y\sqrt{4-y} \, dy

Step 4: Evaluate the Integral y4ydy \int y\sqrt{4-y} \, dy


Both parts involve the integral y4ydy \int y\sqrt{4-y} \, dy . Let's find its antiderivative using u-substitution.

Let u=4y u = 4-y . Then y=4u y = 4-u and dy=du dy = -du .
y4ydy=(4u)u(du)=(u4)u1/2du=(u3/24u1/2)du=u5/25/24u3/23/2+C=25u5/283u3/2+C \begin{align*} \int y\sqrt{4-y} \, dy &= \int (4-u)\sqrt{u} (-du) \\ &= \int (u-4)u^{1/2} \, du \\ &= \int (u^{3/2} - 4u^{1/2}) \, du \\ &= \frac{u^{5/2}}{5/2} - 4\frac{u^{3/2}}{3/2} + C \\ &= \frac{2}{5}u^{5/2} - \frac{8}{3}u^{3/2} + C \end{align*}
Substitute back u=4y u = 4-y :
y4ydy=25(4y)5/283(4y)3/2+C \int y\sqrt{4-y} \, dy = \frac{2}{5}(4-y)^{5/2} - \frac{8}{3}(4-y)^{3/2} + C
Let G(y)=25(4y)5/283(4y)3/2 G(y) = \frac{2}{5}(4-y)^{5/2} - \frac{8}{3}(4-y)^{3/2} .

Step 5: Evaluate the Definite Integrals


First part: V1=2π03(y4yy2+2y)dy V_1 = 2\pi \int_{0}^{3} (y\sqrt{4-y} - y^2 + 2y) \, dy
V1=2π[G(y)y33+y2]03=2π[(G(3)333+32)(G(0)033+02)] \begin{align*} V_1 &= 2\pi \left[ G(y) - \frac{y^3}{3} + y^2 \right]_{0}^{3} \\ &= 2\pi \left[ \left(G(3) - \frac{3^3}{3} + 3^2\right) - \left(G(0) - \frac{0^3}{3} + 0^2\right) \right] \end{align*}
We need G(3) G(3) and G(0) G(0) .
G(3)=25(43)5/283(43)3/2=25(1)5/283(1)3/2=2583=64015=3415 \begin{align*} G(3) &= \frac{2}{5}(4-3)^{5/2} - \frac{8}{3}(4-3)^{3/2} \\ &= \frac{2}{5}(1)^{5/2} - \frac{8}{3}(1)^{3/2} \\ &= \frac{2}{5} - \frac{8}{3} = \frac{6 - 40}{15} = -\frac{34}{15} \end{align*}
G(0)=25(40)5/283(40)3/2=25(45/2)83(43/2)=25(25)83(23)=25(32)83(8)=645643=64(3515)=12815 \begin{align*} G(0) &= \frac{2}{5}(4-0)^{5/2} - \frac{8}{3}(4-0)^{3/2} \\ &= \frac{2}{5}(4^{5/2}) - \frac{8}{3}(4^{3/2}) \\ &= \frac{2}{5}(2^5) - \frac{8}{3}(2^3) \\ &= \frac{2}{5}(32) - \frac{8}{3}(8) \\ &= \frac{64}{5} - \frac{64}{3} = 64\left(\frac{3-5}{15}\right) = -\frac{128}{15} \end{align*}
V1=2π[(3415273+9)(128150+0)]=2π[(34159+9)(12815)]=2π[3415+12815]=2π[9415]=188π15 \begin{align*} V_1 &= 2\pi \left[ \left(-\frac{34}{15} - \frac{27}{3} + 9\right) - \left(-\frac{128}{15} - 0 + 0\right) \right] \\ &= 2\pi \left[ \left(-\frac{34}{15} - 9 + 9\right) - \left(-\frac{128}{15}\right) \right] \\ &= 2\pi \left[ -\frac{34}{15} + \frac{128}{15} \right] \\ &= 2\pi \left[ \frac{94}{15} \right] = \frac{188\pi}{15} \end{align*}

Second part: V2=4π34y4ydy V_2 = 4\pi \int_{3}^{4} y\sqrt{4-y} \, dy
V2=4π[G(y)]34=4π[G(4)G(3)] \begin{align*} V_2 &= 4\pi [G(y)]_{3}^{4} \\ &= 4\pi [ G(4) - G(3) ] \end{align*}
We need G(4) G(4) .
G(4)=25(44)5/283(44)3/2=00=0 G(4) = \frac{2}{5}(4-4)^{5/2} - \frac{8}{3}(4-4)^{3/2} = 0 - 0 = 0
V2=4π[0(3415)]=4π(3415)=136π15 \begin{align*} V_2 &= 4\pi [ 0 - (-\frac{34}{15}) ] \\ &= 4\pi \left( \frac{34}{15} \right) = \frac{136\pi}{15} \end{align*}

Step 6: Calculate the Total Volume


The total volume is V=V1+V2 V = V_1 + V_2 .
V=188π15+136π15=(188+136)π15=324π15=108π5 \begin{align*} V &= \frac{188\pi}{15} + \frac{136\pi}{15} \\ &= \frac{(188 + 136)\pi}{15} \\ &= \frac{324\pi}{15} \\ &= \frac{108\pi}{5} \end{align*}
Note that this result, 108π5 \frac{108\pi}{5} , matches the volume calculated using the Washer Method in Part A, as expected.

Step 7: Conclusion for Part (b)


The volume of the solid obtained by rotating the region about the x-axis using the method of cylindrical shells is 108π5 \frac{108\pi}{5} .
V=108π5
\boxed{ V = \frac{108\pi}{5} }
Access Restricted - Please Unlock Unlock Now
V=108π5
\boxed{ V = \frac{108\pi}{5} }
Question B.10
(Max Marks: 5)
Find the radius of convergence and the interval of convergence of the power series n=1(x+1)nn2 \sum_{n=1}^{\infty} \frac{(x+1)^n}{n^2} .
Power Series: Radius of convergence
Power Series
Convergence test: ratio
Series: Ratio test

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Identify the Series Center and Choose a Test

The given series is n=1(x+1)nn2 \sum_{n=1}^{\infty} \frac{(x+1)^n}{n^2} . This is a power series centered at a=1 a=-1 , since the term is a function of (x(1))n (x-(-1))^n .
To find the radius and interval of convergence, we typically use the Ratio Test.

Step 2: Apply the Ratio Test

Let an=(x+1)nn2 a_n = \frac{(x+1)^n}{n^2} . The Ratio Test examines the limit:
L=limnan+1an
L = \lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|

First, write out an+1 a_{n+1} by replacing n n with n+1 n+1 :
an+1=(x+1)n+1(n+1)2 a_{n+1} = \frac{(x+1)^{n+1}}{(n+1)^2}
Now form the ratio an+1an \left| \frac{a_{n+1}}{a_n} \right| :
an+1an=(x+1)n+1(n+1)2÷(x+1)nn2=(x+1)n+1(n+1)2n2(x+1)n \begin{align*} \left| \frac{a_{n+1}}{a_n} \right| &= \left| \frac{(x+1)^{n+1}}{(n+1)^2} \div \frac{(x+1)^n}{n^2} \right| \\ &= \left| \frac{(x+1)^{n+1}}{(n+1)^2} \cdot \frac{n^2}{(x+1)^n} \right| \end{align*}
Group similar terms together and simplify:
=(x+1)n+1(x+1)nn2(n+1)2=(x+1)(nn+1)2=x+1(nn+1)2 \begin{align*} &= \left| \frac{(x+1)^{n+1}}{(x+1)^n} \cdot \frac{n^2}{(n+1)^2} \right| \\ &= \left| (x+1) \cdot \left(\frac{n}{n+1}\right)^2 \right| \\ &= |x+1| \left(\frac{n}{n+1}\right)^2 \end{align*}
(Since n1 n \ge 1 , (nn+1)2 (\frac{n}{n+1})^2 is positive).

Step 3: Evaluate the Limit L

Now find the limit of the ratio as n n \to \infty :
L=limn(x+1(nn+1)2) \begin{align*} L &= \lim_{n\to\infty} \left( |x+1| \left(\frac{n}{n+1}\right)^2 \right) \end{align*}
Since x+1 |x+1| does not depend on n n , pull it out of the limit:
L=x+1limn(nn+1)2 \begin{align*} L &= |x+1| \lim_{n\to\infty} \left( \frac{n}{n+1} \right)^2 \end{align*}
Evaluate the limit:
limnnn+1=limn11+1/n=11+0=1 \lim_{n\to\infty} \frac{n}{n+1} = \lim_{n\to\infty} \frac{1}{1+1/n} = \frac{1}{1+0} = 1
So,
L=x+1(1)2=x+1 \begin{align*} L &= |x+1| \cdot (1)^2 \\ &= |x+1| \end{align*}

Step 4: Determine the Radius of Convergence

The Ratio Test states that the series converges absolutely if L<1 L < 1 .
x+1<1 |x+1| < 1
This inequality is in the form xa<R |x-a| < R , where a=1 a = -1 is the center and R R is the radius of convergence.
By direct comparison, the radius of convergence is R=1 R = 1 .

Step 5: Test the Endpoints for the Interval of Convergence

The series converges absolutely for x+1<1 |x+1| < 1 , which is the interval 1<x+1<1 -1 < x+1 < 1 , or 2<x<0 -2 < x < 0 .
We must now test the convergence at the endpoints x=2 x = -2 and x=0 x = 0 .

Endpoint x = -2:
Substitute x=2 x = -2 into the original series:
n=1(2+1)nn2=n=1(1)nn2 \sum_{n=1}^{\infty} \frac{(-2+1)^n}{n^2} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}
This is an alternating series. Let's check for absolute convergence by examining n=1(1)nn2=n=11n2 \sum_{n=1}^{\infty} \left|\frac{(-1)^n}{n^2}\right| = \sum_{n=1}^{\infty} \frac{1}{n^2} .
This is a p-series with p=2 p=2 . Since p=2>1 p=2 > 1 , the series 1n2 \sum \frac{1}{n^2} converges.
Therefore, the series (1)nn2 \sum \frac{(-1)^n}{n^2} converges absolutely at x=2 x=-2 . (This also implies it converges by the AST).

Endpoint x = 0:
Substitute x=0 x = 0 into the original series:
n=1(0+1)nn2=n=11nn2=n=11n2 \sum_{n=1}^{\infty} \frac{(0+1)^n}{n^2} = \sum_{n=1}^{\infty} \frac{1^n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2}
As noted above, this is a convergent p-series (p=2>1 p=2 > 1 ).
Therefore, the series converges at x=0 x=0 .

Step 6: Determine the Interval of Convergence

The series converges absolutely for 2<x<0 -2 < x < 0 .
It also converges at both endpoints, x=2 x=-2 and x=0 x=0 .
Therefore, the interval of convergence includes the endpoints.

Step 7: Conclusion

The radius of convergence is R=1 R=1 . The interval of convergence is [2,0] [-2, 0] .
Radius: R=1,Interval: [2,0] \boxed{ \text{Radius: } R=1, \quad \text{Interval: } [-2, 0] }
Access Restricted - Please Unlock Unlock Now
Radius: R=1,Interval: [2,0] \boxed{ \text{Radius: } R=1, \quad \text{Interval: } [-2, 0] }
Question B.11
Find the radius of convergence and the interval of convergence of the power series n=1(2n+1n+3)n(x1)n \sum_{n=1}^{\infty} \left(\frac{2n+1}{n+3}\right)^n (x-1)^n .
Power Series: Radius of convergence
Power Series
Convergence Test: Root
Series: Root test

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Question: Find the radius of convergence and the interval of convergence of the power series n=1(2n+1n+3)n(x1)n \sum_{n=1}^{\infty} \left(\frac{2n+1}{n+3}\right)^n (x-1)^n .

Step 1: Identify the Series Center and Choose a Test


The given series is n=1(2n+1n+3)n(x1)n \sum_{n=1}^{\infty} \left(\frac{2n+1}{n+3}\right)^n (x-1)^n .

This is a power series centered at a=1 a=1 .

The entire term involves expressions raised to the n n -th power.

This structure suggests the Root Test is a good choice for finding the radius of convergence.

Step 2: Apply the Root Test


Let an=(2n+1n+3)n(x1)n a_n = \left(\frac{2n+1}{n+3}\right)^n (x-1)^n .

The Root Test examines the limit:
L=limnann L = \lim_{n\to\infty} \sqrt[n]{|a_n|}

Calculate ann \sqrt[n]{|a_n|} :
ann=(2n+1n+3)n(x1)nn=(2n+1n+3)nx1nn(since 2n+1n+3>0 for n1)=[(2n+1n+3)nx1n]1/n=(2n+1n+3)x1 \begin{align*} \sqrt[n]{|a_n|} &= \sqrt[n]{\left| \left(\frac{2n+1}{n+3}\right)^n (x-1)^n \right|} \\ &= \sqrt[n]{\left(\frac{2n+1}{n+3}\right)^n |x-1|^n} \quad (\text{since } \frac{2n+1}{n+3} > 0 \text{ for } n \ge 1) \\ &= \left[ \left(\frac{2n+1}{n+3}\right)^n |x-1|^n \right]^{1/n} \\ &= \left(\frac{2n+1}{n+3}\right) |x-1| \end{align*}

Step 3: Evaluate the Limit L


Now find the limit of this expression as n n \to \infty :
L=limn[(2n+1n+3)x1] \begin{align*} L &= \lim_{n\to\infty} \left[ \left(\frac{2n+1}{n+3}\right) |x-1| \right] \end{align*}

Since x1 |x-1| does not depend on n n , pull it out of the limit:
L=x1limn(2n+1n+3) \begin{align*} L &= |x-1| \lim_{n\to\infty} \left( \frac{2n+1}{n+3} \right) \end{align*}

Evaluate the remaining limit:
limn(2n+1n+3)=limn(2+1/n1+3/n)=2+01+0=2 \begin{align*} \lim_{n\to\infty} \left( \frac{2n+1}{n+3} \right) &= \lim_{n\to\infty} \left( \frac{2+1/n}{1+3/n} \right) \\ &= \frac{2+0}{1+0} \\ &= 2 \end{align*}

Substitute this back into the expression for L L :
L=x12=2x1 L = |x-1| \cdot 2 = 2|x-1|

Step 4: Determine the Radius of Convergence


The Root Test states that the series converges absolutely if L<1 L < 1 .
2x1<1 2|x-1| < 1

Solve this inequality for x1 |x-1| :
x1<12 |x-1| < \frac{1}{2}

This inequality is in the form xa<R |x-a| < R , where a=1 a = 1 is the center and R R is the radius of convergence.

By direct comparison, the radius of convergence is R=1/2 R = 1/2 .

Step 5: Test the Endpoints for the Interval of Convergence


The series converges absolutely for x1<1/2 |x-1| < 1/2 .

This is the interval 1/2<x1<1/2 -1/2 < x-1 < 1/2 , or 1/2<x<3/2 1/2 < x < 3/2 .

We must now test the convergence at the endpoints x=1/2 x = 1/2 and x=3/2 x = 3/2 .

Endpoint x = 3/2:
Substitute x=3/2 x = 3/2 into the original series. Note (x1)=(3/21)=1/2 (x-1) = (3/2 - 1) = 1/2 .
n=1(2n+1n+3)n(12)n=n=1(2n+12(n+3))n=n=1(2n+12n+6)n \sum_{n=1}^{\infty} \left(\frac{2n+1}{n+3}\right)^n \left(\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} \left(\frac{2n+1}{2(n+3)}\right)^n = \sum_{n=1}^{\infty} \left(\frac{2n+1}{2n+6}\right)^n
Let an=(2n+12n+6)n a_n = \left(\frac{2n+1}{2n+6}\right)^n .

Use the Test for Divergence. We need to find limnan \lim_{n\to\infty} a_n .

Consider y=an=(2n+12n+6)n y = a_n = \left(\frac{2n+1}{2n+6}\right)^n . We evaluate limnlny \lim_{n\to\infty} \ln y :
lny=ln[(2n+12n+6)n]=nln(2n+652n+6)=nln(152n+6) \begin{align*} \ln y &= \ln\left[ \left(\frac{2n+1}{2n+6}\right)^n \right] \\ &= n \ln \left(\frac{2n+6-5}{2n+6}\right) \\ &= n \ln \left(1 - \frac{5}{2n+6}\right) \end{align*}
Using the approximation ln(1+t)t \ln(1+t) \approx t for small t t (where t=52n+60 t = -\frac{5}{2n+6} \to 0 as n n \to \infty ), or recognizing the limit form related to ek e^k .
limnlny=limnn(52n+6)=limn5n2n+6=limn52+6/n=52 \begin{align*} \lim_{n\to\infty} \ln y &= \lim_{n\to\infty} n \left( -\frac{5}{2n+6} \right) \\ &= \lim_{n\to\infty} \frac{-5n}{2n+6} \\ &= \lim_{n\to\infty} \frac{-5}{2+6/n} \\ &= -\frac{5}{2} \end{align*}
Since limnlny=5/2 \lim_{n\to\infty} \ln y = -5/2 , then limnan=e5/2 \lim_{n\to\infty} a_n = e^{-5/2} .

Because the limit of the terms is e5/20 e^{-5/2} \neq 0 , the series diverges at x=3/2 x=3/2 by the Test for Divergence.

Endpoint x = 1/2:
Substitute x=1/2 x = 1/2 into the original series. Note (x1)=(1/21)=1/2 (x-1) = (1/2 - 1) = -1/2 .
n=1(2n+1n+3)n(12)n=n=1(1)n(2n+12n+6)n \sum_{n=1}^{\infty} \left(\frac{2n+1}{n+3}\right)^n \left(-\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} (-1)^n \left(\frac{2n+1}{2n+6}\right)^n
Let an=(1)n(2n+12n+6)n a_n = (-1)^n \left(\frac{2n+1}{2n+6}\right)^n .

Check the Test for Divergence: limnan \lim_{n\to\infty} a_n .

From the calculation for x=3/2 x=3/2 , we know limnan=limn(2n+12n+6)n=e5/2 \lim_{n\to\infty} |a_n| = \lim_{n\to\infty} \left(\frac{2n+1}{2n+6}\right)^n = e^{-5/2} .

Since the limit of the absolute value of the terms is not 0, the limit of an a_n itself is not 0 (it oscillates between approximately e5/2 e^{-5/2} and e5/2 -e^{-5/2} ).

Therefore, the series diverges at x=1/2 x=1/2 by the Test for Divergence.

Step 6: Determine the Interval of Convergence


The series converges absolutely for x1<1/2 |x-1| < 1/2 , which is the interval (1/2,3/2) (1/2, 3/2) .

It diverges at both endpoints, x=1/2 x=1/2 and x=3/2 x=3/2 .

Therefore, the interval of convergence does not include the endpoints.

Step 7: Conclusion


The radius of convergence is R=1/2 R=1/2 . The interval of convergence is (1/2,3/2) (1/2, 3/2) .
Radius: R=1/2,Interval: (1/2,3/2)
\boxed{ \text{Radius: } R=1/2, \quad \text{Interval: } (1/2, 3/2) }
Access Restricted - Please Unlock Unlock Now
Radius: R=1/2,Interval: (1/2,3/2)
\boxed{ \text{Radius: } R=1/2, \quad \text{Interval: } (1/2, 3/2) }
Question B.12
(Max Marks: 10)
Evaluate the integral 2x+1x2(x+1)dx \int \frac{2x+1}{x^2(x+1)} \, dx .
integrals
Integrals: Absolute Value
Integrals: Partial Fractions
Integrals: logarithms

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Access Restricted - Please Unlock Unlock Now
Step 1: Choose the Integration Technique


The integrand 2x+1x2(x+1) \frac{2x+1}{x^2(x+1)} is a rational function (a ratio of polynomials).

The degree of the numerator (1) is less than the degree of the denominator (3), so polynomial long division is not needed.

The denominator is already factored as x2(x+1) x^2(x+1) .

This setup indicates that we should use Partial Fraction Decomposition.

Step 2: Set Up the Partial Fraction Decomposition


The denominator has factors x2 x^2 (a repeated linear factor, x x ) and (x+1) (x+1) (a distinct linear factor).

The form of the decomposition for a repeated linear factor xk x^k includes terms for each power from 1 to k k .

Therefore, the decomposition for 2x+1x2(x+1) \frac{2x+1}{x^2(x+1)} is:
2x+1x2(x+1)=Ax+Bx2+Cx+1
\frac{2x+1}{x^2(x+1)} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x+1}


Where A A , B B , and C C are constants we need to determine.

Step 3: Solve for the Coefficients (A, B, C)


To find the constants, multiply both sides of the decomposition equation by the common denominator x2(x+1) x^2(x+1) :
2x+1=(Ax)x2(x+1)+(Bx2)x2(x+1)+(Cx+1)x2(x+1)
2x+1 = \left(\frac{A}{x}\right)x^2(x+1) + \left(\frac{B}{x^2}\right)x^2(x+1) + \left(\frac{C}{x+1}\right)x^2(x+1)

2x+1=Ax(x+1)+B(x+1)+Cx2
2x+1 = Ax(x+1) + B(x+1) + Cx^2


Now, expand and collect terms based on powers of x x :
2x+1=A(x2+x)+B(x+1)+Cx22x+1=Ax2+Ax+Bx+B+Cx20x2+2x+1=(A+C)x2+(A+B)x+B \begin{align*}
2x+1 &= A(x^2+x) + B(x+1) + Cx^2 \\
2x+1 &= Ax^2 + Ax + Bx + B + Cx^2 \\
0x^2 + 2x + 1 &= (A+C)x^2 + (A+B)x + B
\end{align*}


Equate the coefficients of corresponding powers of x x on both sides:
- Constant term (x0 x^0 ): B=1 B = 1
- Coefficient of x1 x^1 : A+B=2 A+B = 2
- Coefficient of x2 x^2 : A+C=0 A+C = 0

Now solve this system:
- From the constant term, we immediately get B=1 \boxed{B=1} .

- Substitute B=1 B=1 into the x1 x^1 equation: A+1=2    A=1 A+1 = 2 \implies \boxed{A=1} .

- Substitute A=1 A=1 into the x2 x^2 equation: 1+C=0    C=1 1+C = 0 \implies \boxed{C=-1} .


Alternatively, you can use the Heaviside cover-up method for B and C.

Set x=0x=0 in 2x+1=Ax(x+1)+B(x+1)+Cx22x+1 = Ax(x+1) + B(x+1) + Cx^2 to get 1=B(1)    B=11 = B(1) \implies B=1.

Set x=1x=-1 to get 2(1)+1=C(1)2    1=C2(-1)+1 = C(-1)^2 \implies -1 = C.

Then find A by plugging in another value like x=1x=1: 2(1)+1=A(1)(2)+B(2)+C(1)2    3=2A+2B+C2(1)+1 = A(1)(2) + B(2) + C(1)^2 \implies 3 = 2A + 2B + C.

Substitute B=1,C=1B=1, C=-1: 3=2A+2(1)+(1)    3=2A+1    2=2A    A=13 = 2A + 2(1) + (-1) \implies 3 = 2A + 1 \implies 2 = 2A \implies A=1.


Step 4: Rewrite the Integral


Substitute the coefficients A=1,B=1,C=1 A=1, B=1, C=-1 back into the decomposition:
2x+1x2(x+1)=1x+1x21x+1
\frac{2x+1}{x^2(x+1)} = \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x+1}


Now rewrite the integral using these partial fractions:
2x+1x2(x+1)dx=(1x+1x21x+1)dx
\int \frac{2x+1}{x^2(x+1)} \, dx = \int \left( \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x+1} \right) \, dx


Step 5: Integrate Term by Term


Integrate each term separately:
1xdx+1x2dx1x+1dx=1xdx+x2dx1x+1dx=(lnx)+(x11)(lnx+1)+C=lnx1xlnx+1+C \begin{align*} & \int \frac{1}{x} \, dx + \int \frac{1}{x^2} \, dx - \int \frac{1}{x+1} \, dx \\ &= \int \frac{1}{x} \, dx + \int x^{-2} \, dx - \int \frac{1}{x+1} \, dx \\ &= (\ln|x|) + \left(\frac{x^{-1}}{-1}\right) - (\ln|x+1|) + C \\ &= \ln|x| - \frac{1}{x} - \ln|x+1| + C \end{align*}

Remember the integral of 1/x 1/x is lnx \ln|x| , the integral of xn x^n is xn+1/(n+1) x^{n+1}/(n+1) for n1 n \neq -1 , and the integral of 1/(x+a) 1/(x+a) is lnx+a \ln|x+a| .

We can combine the logarithm terms:
=lnxx+11x+C
= \ln\left|\frac{x}{x+1}\right| - \frac{1}{x} + C


Step 6: Conclusion


The indefinite integral is lnxx+11x+C \ln\left|\frac{x}{x+1}\right| - \frac{1}{x} + C .
2x+1x2(x+1)dx=lnxx+11x+C
\boxed{ \begin{align*} \int \frac{2x+1}{x^2(x+1)} \, dx &= \ln\left|\frac{x}{x+1}\right| \\ &\quad - \frac{1}{x} + C \end{align*} }
Access Restricted - Please Unlock Unlock Now
2x+1x2(x+1)dx=lnxx+11x+C
\boxed{ \int \frac{2x+1}{x^2(x+1)} \, dx = \ln\left|\frac{x}{x+1}\right| - \frac{1}{x} + C }