Question 1 (a)
Compute the definite integral 0π/2sinxdx \int_{0}^{\pi/2} \sin x \, dx .
integrals

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Understand the Goal

We need to evaluate the definite integral of the function f(x)=sinx f(x) = \sin x over the interval [0,π/2][0, \pi/2]. This involves finding the antiderivative of sinx \sin x and evaluating it at the upper and lower limits of integration using the Fundamental Theorem of Calculus, Part 2.

Step 2: Find the Antiderivative

We need to find a function F(x) F(x) such that its derivative F(x) F'(x) is equal to f(x)=sinx f(x) = \sin x .
Remember the basic derivative rules for trigonometric functions: the derivative of cosx \cos x is sinx -\sin x . Therefore, the antiderivative of sinx \sin x is cosx -\cos x , because the derivative of cosx -\cos x is (sinx)=sinx -(-\sin x) = \sin x .
So, the antiderivative is F(x)=cosx F(x) = -\cos x .

Step 3: Apply the Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus, Part 2, states that if F F is an antiderivative of f f , then:
abf(x)dx=F(b)F(a)
\int_{a}^{b} f(x) \, dx = F(b) - F(a)

In our case, f(x)=sinx f(x) = \sin x , F(x)=cosx F(x) = -\cos x , a=0 a = 0 , and b=π/2 b = \pi/2 .
0π/2sinxdx=[cosx]0π/2=(cos(π/2))(cos(0)) \begin{align*}
& \int_{0}^{\pi/2} \sin x \, dx \\
&= [-\cos x]_{0}^{\pi/2} \\
&= (-\cos(\pi/2)) - (-\cos(0))
\end{align*}


Step 4: Evaluate at the Limits

Now we need to evaluate cosx -\cos x at the upper limit x=π/2 x = \pi/2 and the lower limit x=0 x = 0 .
Recall the values of cosine at these key angles: cos(π/2)=0 \cos(\pi/2) = 0 and cos(0)=1 \cos(0) = 1 .
Substitute these values into the expression:
(cos(π/2))(cos(0))=(0)(1)=0+1=1 \begin{align*}
& (-\cos(\pi/2)) - (-\cos(0)) \\
&= (-0) - (-1) \\
&= 0 + 1 \\
&= 1
\end{align*}


The value of the definite integral is 1.

0π/2sinxdx=1
\boxed{ \int_{0}^{\pi/2} \sin x \, dx = 1 }
0π/2sinxdx=1
\boxed{ \int_{0}^{\pi/2} \sin x \, dx = 1 }
Question 1 (b)
(Max Marks: 3)
Compute the indefinite integral x9+x2dx \int x\sqrt{9+x^2} \, dx .
integrals
Integrals: u-substitution

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Identify the Integration Technique

We need to compute the indefinite integral x9+x2dx \int x\sqrt{9+x^2} \, dx . The integrand involves a function inside a square root, 9+x2 9+x^2 , and its derivative (up to a constant factor), 2x 2x , is present as the x x term outside the square root. This structure suggests using integration by substitution (u-substitution).

Step 2: Choose the Substitution

Let u u be the inner function:
u=9+x2
u = 9+x^2

Now, find the differential du du by differentiating u u with respect to x x :
dudx=2x
\frac{du}{dx} = 2x

Rearrange to solve for du du :
du=2xdx
du = 2x \, dx

Notice that our integral has xdx x \, dx , not 2xdx 2x \, dx . We can solve the differential equation for xdx x \, dx : xdx=12du x \, dx = \frac{1}{2} du . This allows us to substitute perfectly.

Step 3: Substitute into the Integral

Rewrite the original integral using u u and du du .
Substitute 9+x2=u=u1/2 \sqrt{9+x^2} = \sqrt{u} = u^{1/2} and xdx=12du x \, dx = \frac{1}{2} du :
x9+x2dx=u(12du)=12u1/2du \begin{align*}
& \int x\sqrt{9+x^2} \, dx \\
&= \int \sqrt{u} \left( \frac{1}{2} du \right) \\
&= \frac{1}{2} \int u^{1/2} \, du
\end{align*}


Step 4: Integrate with Respect to u

Now integrate u1/2 u^{1/2} using the power rule for integration: undu=un+1n+1+C \int u^n \, du = \frac{u^{n+1}}{n+1} + C (for n1 n \neq -1 ).
Here, n=1/2 n = 1/2 , so n+1=3/2 n+1 = 3/2 .
12u1/2du=12(u1/2+11/2+1)+C=12(u3/23/2)+C=1223u3/2+C=13u3/2+C \begin{align*}
& \frac{1}{2} \int u^{1/2} \, du \\
&= \frac{1}{2} \left( \frac{u^{1/2 + 1}}{1/2 + 1} \right) + C \\
&= \frac{1}{2} \left( \frac{u^{3/2}}{3/2} \right) + C \\
&= \frac{1}{2} \cdot \frac{2}{3} u^{3/2} + C \\
&= \frac{1}{3} u^{3/2} + C
\end{align*}

Don't forget the constant of integration, +C + C , when computing indefinite integrals!

Step 5: Substitute Back to x

Replace u u with its expression in terms of x x , which is u=9+x2 u = 9+x^2 .
13(9+x2)3/2+C
\frac{1}{3} (9+x^2)^{3/2} + C


The indefinite integral is:
x9+x2dx=13(9+x2)3/2+C
\boxed{ \int x\sqrt{9+x^2} \, dx = \frac{1}{3} (9+x^2)^{3/2} + C }
x9+x2dx=13(9+x2)3/2+C
\boxed{ \int x\sqrt{9+x^2} \, dx = \frac{1}{3} (9+x^2)^{3/2} + C }
Question 1 (c)
(Max Marks: 3)
Compute the definite integral 01x2exdx \int_{0}^{1} x^2 e^x \, dx .
integrals
Integrals: Integration By Parts

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Identify the Integration Technique

We need to compute the definite integral 01x2exdx \int_{0}^{1} x^2 e^x \, dx . The integrand is a product of a polynomial function (x2x^2) and an exponential function (exe^x). Standard u-substitution doesn't apply easily. This suggests using integration by parts. The formula is udv=uvvdu \int u \, dv = uv - \int v \, du .

Step 2: Apply Integration by Parts (First Pass)

We need to choose u u and dv dv . Using the LIPET/LIATE guideline (Polynomial comes before Exponential), we choose:
Let u=x2 u = x^2 and dv=exdx dv = e^x \, dx .
Then we find du du by differentiating u u , and v v by integrating dv dv :
du=2xdx du = 2x \, dx
v=exdx=ex v = \int e^x \, dx = e^x

Now apply the integration by parts formula:
x2exdx=uvvdu=x2exex(2xdx)=x2ex2xexdx \begin{align*}
& \int x^2 e^x \, dx \\
&= uv - \int v \, du \\
&= x^2 e^x - \int e^x (2x \, dx) \\
&= x^2 e^x - 2 \int x e^x \, dx
\end{align*}

Notice that the new integral xexdx \int x e^x \, dx is still a product of a polynomial (xx) and an exponential (exe^x). This means we need to apply integration by parts a second time.

Step 3: Apply Integration by Parts (Second Pass)

Let's evaluate the new integral xexdx \int x e^x \, dx using integration by parts again.
Choose u1=x u_1 = x and dv1=exdx dv_1 = e^x \, dx .
Then du1=dx du_1 = dx and v1=exdx=ex v_1 = \int e^x \, dx = e^x .
Apply the formula u1dv1=u1v1v1du1 \int u_1 \, dv_1 = u_1 v_1 - \int v_1 \, du_1 :
xexdx=xexexdx=xexex \begin{align*}
& \int x e^x \, dx \\
&= x e^x - \int e^x \, dx \\
&= x e^x - e^x
\end{align*}


Step 4: Combine Results to Find the Antiderivative

Substitute the result from Step 3 back into the expression from Step 2:
x2exdx=x2ex2xexdx=x2ex2(xexex)+C=x2ex2xex+2ex+C=(x22x+2)ex+C \begin{align*}
& \int x^2 e^x \, dx \\
&= x^2 e^x - 2 \int x e^x \, dx \\
&= x^2 e^x - 2 (x e^x - e^x) + C \\
&= x^2 e^x - 2x e^x + 2e^x + C \\
&= (x^2 - 2x + 2)e^x + C
\end{align*}

So, the antiderivative is F(x)=(x22x+2)ex F(x) = (x^2 - 2x + 2)e^x .

Step 5: Apply the Fundamental Theorem of Calculus

Now we evaluate the definite integral using the limits a=0 a = 0 and b=1 b = 1 .
01x2exdx=F(1)F(0)
\int_{0}^{1} x^2 e^x \, dx = F(1) - F(0)

First, calculate F(1) F(1) :
F(1)=(122(1)+2)e1=(12+2)e=(1)e=e \begin{align*}
F(1) &= (1^2 - 2(1) + 2)e^1 \\
&= (1 - 2 + 2)e \\
&= (1)e = e
\end{align*}

Next, calculate F(0) F(0) :
F(0)=(022(0)+2)e0=(00+2)(1)=2 \begin{align*}
F(0) &= (0^2 - 2(0) + 2)e^0 \\
&= (0 - 0 + 2)(1) \\
&= 2
\end{align*}

Remember that e0=1 e^0 = 1 . This is a common point where errors can occur.
Finally, compute F(1)F(0) F(1) - F(0) :
F(1)F(0)=e2
F(1) - F(0) = e - 2


The value of the definite integral is e2 e - 2 .

01x2exdx=e2
\boxed{ \int_{0}^{1} x^2 e^x \, dx = e - 2 }
01x2exdx=e2
\boxed{ \int_{0}^{1} x^2 e^x \, dx = e - 2 }
Question 1 (d)
(Max Marks: 3)
Compute ddx(1x2costdt) \frac{d}{dx} \left( \int_{1}^{x^2} \cos t \, dt \right) .
integrals
Fundamental Theorem of Calculus

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Identify the Relevant Theorem

We need to compute the derivative of a definite integral where the upper limit of integration is a function of x x . This requires the Fundamental Theorem of Calculus, Part 1 (FTC Part 1) combined with the Chain Rule.

Step 2: State the Formula

FTC Part 1 states: ddxaxf(t)dt=f(x) \frac{d}{dx} \int_{a}^{x} f(t) \, dt = f(x) .
When the upper limit is a function g(x) g(x) , the combined formula is:
ddxag(x)f(t)dt=f(g(x))g(x)
\frac{d}{dx} \int_{a}^{g(x)} f(t) \, dt = f(g(x)) \cdot g'(x)

Think of it like this: FTC Part 1 gives you f(upper limit) f(\text{upper limit}) , and then the Chain Rule requires you to multiply by the derivative of the upper limit.

Step 3: Identify Components in Our Problem

In our problem ddx(1x2costdt) \frac{d}{dx} \left( \int_{1}^{x^2} \cos t \, dt \right) :
The lower limit is a constant: a=1 a = 1 .
The integrand function is: f(t)=cost f(t) = \cos t .
The upper limit is a function of x x : g(x)=x2 g(x) = x^2 .

Step 4: Apply the Formula

First, find the derivative of the upper limit, g(x) g'(x) :
g(x)=ddx(x2)=2x
g'(x) = \frac{d}{dx}(x^2) = 2x

Next, evaluate the integrand f(t) f(t) at the upper limit g(x) g(x) :
f(g(x))=f(x2)=cos(x2)
f(g(x)) = f(x^2) = \cos(x^2)

Now, substitute these pieces into the combined formula f(g(x))g(x) f(g(x)) \cdot g'(x) :
ddx(1x2costdt)=f(g(x))g(x)=cos(x2)(2x)
\frac{d}{dx} \left( \int_{1}^{x^2} \cos t \, dt \right) = f(g(x)) \cdot g'(x) = \cos(x^2) \cdot (2x)

It's conventional to write the polynomial factor first.
cos(x2)(2x)=2xcos(x2)
\cos(x^2) \cdot (2x) = 2x \cos(x^2)

Note that the lower limit a=1a=1 being a constant doesn't affect the result when differentiating with respect to x. If the lower limit were also a function of x, the formula would be ddxh(x)g(x)f(t)dt=f(g(x))g(x)f(h(x))h(x) \frac{d}{dx} \int_{h(x)}^{g(x)} f(t) \, dt = f(g(x))g'(x) - f(h(x))h'(x) .

The derivative is 2xcos(x2) 2x \cos(x^2) .

ddx(1x2costdt)=2xcos(x2)
\boxed{ \frac{d}{dx} \left( \int_{1}^{x^2} \cos t \, dt \right) = 2x \cos(x^2) }
ddx(1x2costdt)=2xcos(x2)
\boxed{ \frac{d}{dx} \left( \int_{1}^{x^2} \cos t \, dt \right) = 2x \cos(x^2) }
Question 1 (e)
(Max Marks: 3)
Compute the indefinite integral sin2x1+cos2xdx \int \frac{\sin 2x}{1 + \cos^2 x} \, dx .
Formula: Double and Half-Angle
Integrals: u-substitution
integrals

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Simplify the Integrand

The integrand is sin2x1+cos2x \frac{\sin 2x}{1 + \cos^2 x} . We can simplify the numerator using the double angle identity for sine:
Recall the identity: sin2x=2sinxcosx \sin 2x = 2 \sin x \cos x .
Substituting this into the integral expression gives:
2sinxcosx1+cos2x
\frac{2 \sin x \cos x}{1 + \cos^2 x}

So the integral becomes:
2sinxcosx1+cos2xdx
\int \frac{2 \sin x \cos x}{1 + \cos^2 x} \, dx


Step 2: Identify the Integration Technique

Look at the modified integrand 2sinxcosx1+cos2x \frac{2 \sin x \cos x}{1 + \cos^2 x} . Let's check the derivative of the denominator 1+cos2x 1 + \cos^2 x using the chain rule:
ddx(1+cos2x)=0+ddx((cosx)2)=2(cosx)1ddx(cosx)=2cosx(sinx)=2sinxcosx \begin{align*}
& \frac{d}{dx} (1 + \cos^2 x) \\
&= 0 + \frac{d}{dx} ((\cos x)^2) \\
&= 2(\cos x)^1 \cdot \frac{d}{dx}(\cos x) \\
&= 2 \cos x (-\sin x) \\
&= -2 \sin x \cos x
\end{align*}

The derivative of the denominator is 2sinxcosx -2 \sin x \cos x , which is the negative of the numerator (2sinxcosx 2 \sin x \cos x ). This confirms that integration by substitution (u-substitution) is the appropriate technique, matching the pattern duu \int \frac{-du}{u} .

Step 3: Choose the Substitution

Let u u be the denominator:
u=1+cos2x
u = 1 + \cos^2 x

Find the differential du du :
du=2sinxcosxdx
du = -2 \sin x \cos x \, dx


Step 4: Substitute into the Integral

Rewrite the integral in terms of u u . We have 1+cos2x=u 1 + \cos^2 x = u . The numerator and differential term is 2sinxcosxdx 2 \sin x \cos x \, dx . Comparing this to du=2sinxcosxdx du = -2 \sin x \cos x \, dx , we see that:
2sinxcosxdx=du
2 \sin x \cos x \, dx = -du

Substitute these into the integral:
2sinxcosx1+cos2xdx=11+cos2x(2sinxcosxdx)=1u(du)=1udu \begin{align*}
& \int \frac{2 \sin x \cos x}{1 + \cos^2 x} \, dx \\
&= \int \frac{1}{1 + \cos^2 x} (2 \sin x \cos x \, dx) \\
&= \int \frac{1}{u} (-du) \\
&= -\int \frac{1}{u} \, du
\end{align*}


Step 5: Integrate with Respect to u

Integrate 1u \frac{1}{u} with respect to u u :
Remember the integration rule: 1udu=lnu+C \int \frac{1}{u} \, du = \ln|u| + C .
Applying this rule:
1udu=(lnu)+C=lnu+C \begin{align*}
& -\int \frac{1}{u} \, du \\
&= -(\ln|u|) + C \\
&= -\ln|u| + C
\end{align*}


Step 6: Substitute Back to x

Replace u u with its expression in terms of x x , which is u=1+cos2x u = 1 + \cos^2 x :
ln1+cos2x+C
-\ln|1 + \cos^2 x| + C

Since cos2x0 \cos^2 x \ge 0 , the term 1+cos2x 1 + \cos^2 x is always positive (1+cos2x1 1 + \cos^2 x \ge 1 ). Therefore, the absolute value signs are not strictly necessary.
ln(1+cos2x)+C
-\ln(1 + \cos^2 x) + C


The indefinite integral is:
ln(1+cos2x)+C
\boxed{ -\ln(1 + \cos^2 x) + C }
ln(1+cos2x)+C
\boxed{ -\ln(1 + \cos^2 x) + C }
Question 1 (f)
(Max Marks: 3)
Compute the indefinite integral tan2θsec2θdθ \int \tan^2 \theta \sec^2 \theta \, d\theta .
integrals
Integrals: u-substitution

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Identify the Integration Technique

We need to compute the indefinite integral tan2θsec2θdθ \int \tan^2 \theta \sec^2 \theta \, d\theta . The integrand is a product of powers of tangent and secant. We should look for a possible u-substitution.
Recall the derivatives of tangent and secant: ddθ(tanθ)=sec2θ \frac{d}{d\theta}(\tan \theta) = \sec^2 \theta and ddθ(secθ)=secθtanθ \frac{d}{d\theta}(\sec \theta) = \sec \theta \tan \theta .
Since the derivative of tanθ \tan \theta is sec2θ \sec^2 \theta , and we have a sec2θ \sec^2 \theta factor in the integrand, the substitution u=tanθ u = \tan \theta is the most direct approach.

Step 2: Perform the u-Substitution

Let u=tanθ u = \tan \theta .
Find the differential du du :
du=ddθ(tanθ)dθ=sec2θdθ
du = \frac{d}{d\theta}(\tan \theta) \, d\theta = \sec^2 \theta \, d\theta

Now substitute u u for tanθ \tan \theta and du du for sec2θdθ \sec^2 \theta \, d\theta in the integral:
tan2θsec2θdθ=(tanθ)2(sec2θdθ)=u2du \begin{align*}
& \int \tan^2 \theta \sec^2 \theta \, d\theta \\
&= \int (\tan \theta)^2 (\sec^2 \theta \, d\theta) \\
&= \int u^2 \, du
\end{align*}


Step 3: Integrate with Respect to u

The integral is now a simple power function of u u . Integrate using the power rule for integration: undu=un+1n+1+C \int u^n \, du = \frac{u^{n+1}}{n+1} + C .
Here, n=2 n = 2 , so n+1=3 n+1 = 3 .
u2du=u2+12+1+C=u33+C \begin{align*}
& \int u^2 \, du \\
&= \frac{u^{2+1}}{2+1} + C \\
&= \frac{u^3}{3} + C
\end{align*}


Step 4: Substitute Back to theta

Replace u u with its expression in terms of θ \theta , which is u=tanθ u = \tan \theta .
(tanθ)33+C=tan3θ3+C
\frac{(\tan \theta)^3}{3} + C = \frac{\tan^3 \theta}{3} + C


The indefinite integral is:
tan2θsec2θdθ=tan3θ3+C
\boxed{ \int \tan^2 \theta \sec^2 \theta \, d\theta = \frac{\tan^3 \theta}{3} + C }
tan2θsec2θdθ=tan3θ3+C
\boxed{ \int \tan^2 \theta \sec^2 \theta \, d\theta = \frac{\tan^3 \theta}{3} + C }
Question 2 (a)
(Max Marks: 4)
Determine if the improper integral 24dxx22x3 \int_{2}^{4} \frac{dx}{x^2 - 2x - 3} converges or diverges. Justify your answer.
Limit Comparison Test
Integrals: Improper

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Identify Potential Discontinuities

The integral is 24dxx22x3 \int_{2}^{4} \frac{dx}{x^2 - 2x - 3} . An integral can be improper if the integrand has an infinite discontinuity within the interval of integration or at its endpoints. This happens when the denominator is zero.
Factor the denominator:
x22x3=(x3)(x+1)
x^2 - 2x - 3 = (x-3)(x+1)

The denominator is zero when x=3 x = 3 or x=1 x = -1 .

Step 2: Check Discontinuities Against the Interval

The interval of integration is [2,4] [2, 4] .
The value x=3 x = 3 lies within this interval (2<3<4 2 < 3 < 4 ).
The value x=1 x = -1 is outside this interval.
Since there is an infinite discontinuity at x=3 x = 3 , which is inside the interval [2,4] [2, 4] , this is an improper integral of Type 2.

Step 3: Split the Integral at the Discontinuity

To analyze convergence, we must split the integral into two parts at the point of discontinuity, x=3 x = 3 :
24dx(x3)(x+1)=23dx(x3)(x+1)+34dx(x3)(x+1)
\begin{align*}
\int_{2}^{4} \frac{dx}{(x-3)(x+1)} &= \int_{2}^{3} \frac{dx}{(x-3)(x+1)} \\
&\qquad + \int_{3}^{4} \frac{dx}{(x-3)(x+1)}
\end{align*}

The original integral converges if and only if *both* of these new integrals converge. If either one diverges, the original integral diverges. Let's analyze the first part, 23dx(x3)(x+1) \int_{2}^{3} \frac{dx}{(x-3)(x+1)} .

Step 4: Choose a Comparison Function

We can use the Limit Comparison Test (LCT) for improper integrals to determine convergence or divergence without calculating the integral's value. We need to compare our integrand, f(x)=1(x3)(x+1) f(x) = \frac{1}{(x-3)(x+1)} , to a simpler function g(x) g(x) whose convergence behavior near x=3 x=3 is known.
As x3 x \to 3 , the factor (x+1) (x+1) approaches 3+1=4 3+1 = 4 . So, the integrand behaves like 1(x3)(4) \frac{1}{(x-3)(4)} . This suggests comparing with:
g(x)=1x3
g(x) = \frac{1}{x-3}

The key idea for LCT is to choose a comparison function g(x) g(x) that captures the "most problematic" part of f(x) f(x) near the discontinuity. Here, the (x3) (x-3) term causes the division by zero.

Step 5: Apply the Limit Comparison Test

Calculate the limit of the ratio f(x)/g(x) f(x) / g(x) as x x approaches the discontinuity x=3 x=3 (from the left, for the first integral):
L=limx3f(x)g(x)=limx31/((x3)(x+1))1/(x3)=limx31(x3)(x+1)×(x3)1=limx31x+1=13+1=14 \begin{align*}
L &= \lim_{x \to 3^{-}} \frac{f(x)}{g(x)} \\
&= \lim_{x \to 3^{-}} \frac{1 / ((x-3)(x+1))}{1 / (x-3)} \\
&= \lim_{x \to 3^{-}} \frac{1}{(x-3)(x+1)} \times \frac{(x-3)}{1} \\
&= \lim_{x \to 3^{-}} \frac{1}{x+1} \\
&= \frac{1}{3+1} = \frac{1}{4}
\end{align*}

Since the limit L=1/4 L = 1/4 is a finite positive number (0<L< 0 < L < \infty ), the LCT states that 23f(x)dx \int_{2}^{3} f(x) \, dx and 23g(x)dx \int_{2}^{3} g(x) \, dx have the same convergence behavior (they either both converge or both diverge).

Step 6: Analyze the Comparison Integral

Now we need to determine if the comparison integral 23g(x)dx=23dxx3 \int_{2}^{3} g(x) \, dx = \int_{2}^{3} \frac{dx}{x-3} converges or diverges.
This is a p-integral with a discontinuity at the upper endpoint. Let y=x3 y = x-3 . As x3 x \to 3^{-} , y0 y \to 0^{-} . The integral behaves like a0dyyp \int_{a}^{0} \frac{dy}{y^p} .
In our case, 23dx(x3)1 \int_{2}^{3} \frac{dx}{(x-3)^1} , the power is p=1 p = 1 .
An improper integral of the form acdx(cx)p \int_{a}^{c} \frac{dx}{(c-x)^p} or cbdx(xc)p \int_{c}^{b} \frac{dx}{(x-c)^p} converges if p<1 p < 1 and diverges if p1 p \ge 1 .
Since p=1 p = 1 , the integral 23dxx3 \int_{2}^{3} \frac{dx}{x-3} diverges.

Step 7: Conclusion

Based on the LCT:
1. We compared 23dx(x3)(x+1) \int_{2}^{3} \frac{dx}{(x-3)(x+1)} with 23dxx3 \int_{2}^{3} \frac{dx}{x-3} .
2. The limit of the ratio of their integrands as x3 x \to 3^{-} was L=1/4 L = 1/4 (finite and positive).
3. The comparison integral 23dxx3 \int_{2}^{3} \frac{dx}{x-3} diverges (since p=1 p=1 ).
Therefore, the integral 23dx(x3)(x+1) \int_{2}^{3} \frac{dx}{(x-3)(x+1)} also diverges.

Since one of the parts (23 \int_{2}^{3} \dots ) diverges, the original integral 24dxx22x3 \int_{2}^{4} \frac{dx}{x^2 - 2x - 3} must also diverge. There is no need to check the convergence of the second part (34 \int_{3}^{4} \dots ).

The integral 24dxx22x3 diverges.
\boxed{ \text{The integral } \int_{2}^{4} \frac{dx}{x^2 - 2x - 3} \text{ diverges.} }


Lessons Learned

Beyond the steps to solve this specific problem, what's the bigger picture?

1. Spotting the Trouble: When integrating a fraction, always check if the denominator can be zero within your integration bounds. If it can, like x22x3=(x3)(x+1)x^2 - 2x - 3 = (x-3)(x+1) being zero at x=3x=3 in the interval [2,4][2, 4], you've found a vertical asymptote. This means the function value shoots off to infinity, and you're dealing with an improper integral.

2. Does Infinite Height Mean Infinite Area? Not always! A function can go to infinity, but the area underneath it might still be a finite number. Think about 011xdx \int_{0}^{1} \frac{1}{\sqrt{x}} dx : 1/x1/\sqrt{x} goes to infinity at x=0x=0, but the integral converges (area is finite).

3. It's All About Speed (the Power 'p'): What really matters is *how fast* the function runs towards infinity near the asymptote. This speed is determined by the power pp on the factor causing the problem. Near our asymptote x=3x=3, our function 1(x3)(x+1) \frac{1}{(x-3)(x+1)} behaves like 14(x3)1 \frac{1}{4(x-3)^1} . The critical factor is (x3) (x-3) raised to the power p=1 p=1 .

4. The p-Test Threshold: There's a crucial rule for integrals near an asymptote x=cx=c that behave like 1xcp \frac{1}{|x-c|^p} :
* If p1 p \ge 1 , the function grows too fast; the area is infinite (integral diverges).
* If p<1 p < 1 , the function grows slowly enough; the area is finite (integral converges).
Our example had p=1p=1, which is right on the edge, and it diverges. This is the same reason the harmonic series 1+1/2+1/3+1 + 1/2 + 1/3 + \dots diverges. If the factor had been x3 \sqrt{x-3} (so p=1/2p=1/2), the integral would have converged. If it had been (x3)2 (x-3)^2 (so p=2p=2), it would also diverge.

5. Why Factoring and LCT are Useful: Factoring the denominator helps you find the asymptotes and identify the crucial power pp. The Limit Comparison Test (LCT) is a tool that formalizes the idea of "behaves like". It lets you compare your complicated function to the simpler 1xcp \frac{1}{|x-c|^p} form near the asymptote to determine convergence or divergence without actually finding the antiderivative.
Therefore, the integral 23dx(x3)(x+1) \int_{2}^{3} \frac{dx}{(x-3)(x+1)} also diverges.
Question 2 (b)
(Max Marks: 4)
Determine if the improper integral 0(1+sin(ex))e2xdx \int_{0}^{\infty} (1 + \sin(e^x)) e^{-2x} \, dx converges or diverges. Justify your answer.
Convergence test: comparison
Integrals: Improper

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Identify the Type of Improper Integral

The integral is 0(1+sin(ex))e2xdx \int_{0}^{\infty} (1 + \sin(e^x)) e^{-2x} \, dx . Since the upper limit of integration is \infty , this is an improper integral of Type 1.

Step 2: Analyze the Integrand

Let f(x)=(1+sin(ex))e2x f(x) = (1 + \sin(e^x)) e^{-2x} . We need to understand its behavior, especially as x x \to \infty .
The term sin(ex) \sin(e^x) oscillates as x x increases, since ex e^x goes to infinity. However, we know that the sine function is always bounded:
1sin(θ)1for any θ
-1 \le \sin(\theta) \le 1 \quad \text{for any } \theta

So, for θ=ex \theta = e^x , we have 1sin(ex)1 -1 \le \sin(e^x) \le 1 .
This allows us to bound the term (1+sin(ex)) (1 + \sin(e^x)) :
1+(1)1+sin(ex)1+(1)
1 + (-1) \le 1 + \sin(e^x) \le 1 + (1)

01+sin(ex)2
0 \le 1 + \sin(e^x) \le 2

The exponential term e2x e^{-2x} is always positive for real x x .
Therefore, we can bound the entire integrand f(x) f(x) :
Multiply the inequality by e2x e^{-2x} :
0e2x(1+sin(ex))e2x2e2x
0 \cdot e^{-2x} \le (1 + \sin(e^x)) e^{-2x} \le 2 \cdot e^{-2x}

0f(x)2e2x
0 \le f(x) \le 2e^{-2x}

This inequality holds for all x0 x \ge 0 .

Step 3: Choose a Comparison Method and Function

We have found that our integrand f(x) f(x) is non-negative and is less than or equal to g(x)=2e2x g(x) = 2e^{-2x} . This setup is ideal for the Direct Comparison Test for improper integrals.
The Direct Comparison Test states: If 0f(x)g(x) 0 \le f(x) \le g(x) for xa x \ge a , then if ag(x)dx \int_{a}^{\infty} g(x) \, dx converges, af(x)dx \int_{a}^{\infty} f(x) \, dx must also converge.
Our comparison function is g(x)=2e2x g(x) = 2e^{-2x} .

Step 4: Analyze the Comparison Integral

We need to determine if the integral of the comparison function, 0g(x)dx=02e2xdx \int_{0}^{\infty} g(x) \, dx = \int_{0}^{\infty} 2e^{-2x} \, dx , converges or diverges.
This is a standard exponential integral. We can evaluate it directly:
02e2xdx=limb0b2e2xdx=limb[2e2x2]0b=limb[e2x]0b=limb(e2b)(e2(0))=limb(e2b)+e0 \begin{align*}
& \int_{0}^{\infty} 2e^{-2x} \, dx \\
&= \lim_{b \to \infty} \int_{0}^{b} 2e^{-2x} \, dx \\
&= \lim_{b \to \infty} \left[ 2 \frac{e^{-2x}}{-2} \right]_{0}^{b} \\
&= \lim_{b \to \infty} \left[ -e^{-2x} \right]_{0}^{b} \\
&= \lim_{b \to \infty} (-e^{-2b}) - (-e^{-2(0)}) \\
&= \lim_{b \to \infty} (-e^{-2b}) + e^{0}
\end{align*}

As b b \to \infty , 2b -2b \to -\infty , so e2b0 e^{-2b} \to 0 . Also, e0=1 e^0 = 1 .
=(0)+1=1
= (0) + 1 = 1

Since the limit is a finite number (1), the integral 02e2xdx \int_{0}^{\infty} 2e^{-2x} \, dx converges.
Alternatively, you might know that 0ekxdx \int_{0}^{\infty} e^{-kx} dx converges for any constant k>0 k > 0 . Here k=2 k=2 , so 0e2xdx \int_{0}^{\infty} e^{-2x} dx converges, and multiplying by 2 doesn't change convergence.

Step 5: Apply the Direct Comparison Test

We established:
1. 0(1+sin(ex))e2x2e2x 0 \le (1 + \sin(e^x)) e^{-2x} \le 2e^{-2x} for all x0 x \ge 0 .
2. 02e2xdx \int_{0}^{\infty} 2e^{-2x} \, dx converges.

According to the Direct Comparison Test, since our function's integral is bounded above by a convergent integral, our integral must also converge.

Step 6: Conclusion

The integral 0(1+sin(ex))e2xdx \int_{0}^{\infty} (1 + \sin(e^x)) e^{-2x} \, dx converges by the Direct Comparison Test, comparing it with the convergent integral 02e2xdx \int_{0}^{\infty} 2e^{-2x} \, dx .

The integral  converges.
\boxed{ \text{The integral } \text{ converges.} }
The integral  converges.
\boxed{ \text{The integral } \text{ converges.} }
Question 3 (a)
(Max Marks: 4)
Determine if the series n=1n2(1+cos2(n))n5+3 \sum_{n=1}^{\infty} \frac{n^2 (1+\cos^2(n))}{n^5+3} converges or diverges. Explain your reasoning and state the test used.
Series
Series: Comparison Test

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Analyze the Series Terms

Let the terms of the series be an=n2(1+cos2(n))n5+3 a_n = \frac{n^2 (1+\cos^2(n))}{n^5+3} .
We need to determine if the infinite series n=1an \sum_{n=1}^{\infty} a_n converges or diverges.
First, consider the terms an a_n . Since n1 n \ge 1 , n2>0 n^2 > 0 . The term cos2(n)0 \cos^2(n) \ge 0 , so 1+cos2(n)>0 1+\cos^2(n) > 0 . The denominator n5+3>0 n^5+3 > 0 . Therefore, all terms an a_n are positive (an>0 a_n > 0 ). This allows us to use comparison tests.

Step 2: Find a Simpler Series for Comparison

The term (1+cos2(n)) (1+\cos^2(n)) oscillates, which can make tests like the Limit Comparison Test difficult if the limit doesn't exist. However, we know the cosine function is bounded.
Recall that 1cos(n)1 -1 \le \cos(n) \le 1 . Squaring gives 0cos2(n)1 0 \le \cos^2(n) \le 1 .
Therefore, the term (1+cos2(n)) (1+\cos^2(n)) is bounded:
1+01+cos2(n)1+1
1 + 0 \le 1 + \cos^2(n) \le 1 + 1

11+cos2(n)2
1 \le 1 + \cos^2(n) \le 2

We can use the upper bound to establish an inequality for an a_n :
an=n2(1+cos2(n))n5+3n2(2)n5+3=2n2n5+3 \begin{align*}
a_n &= \frac{n^2 (1+\cos^2(n))}{n^5+3} \\
&\le \frac{n^2 (2)}{n^5+3} \\
&= \frac{2n^2}{n^5+3}
\end{align*}

Now, we can simplify this further by noting that for n1 n \ge 1 , n5+3>n5 n^5+3 > n^5 . Therefore, 1n5+3<1n5 \frac{1}{n^5+3} < \frac{1}{n^5} .
an2n2n5+3<2n2n5=2n3 \begin{align*}
a_n &\le \frac{2n^2}{n^5+3} \\
&< \frac{2n^2}{n^5} \\
&= \frac{2}{n^3}
\end{align*}

So, we have established that 0<an<2n3 0 < a_n < \frac{2}{n^3} for all n1 n \ge 1 .
This suggests comparing our series to the series n=12n3 \sum_{n=1}^{\infty} \frac{2}{n^3} .

Step 3: Determine Convergence of the Comparison Series

Let bn=2n3 b_n = \frac{2}{n^3} . The comparison series is n=1bn=n=12n3 \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{2}{n^3} .
This can be written as 2n=11n3 2 \sum_{n=1}^{\infty} \frac{1}{n^3} .
The series n=11n3 \sum_{n=1}^{\infty} \frac{1}{n^3} is a p-series with p=3 p = 3 .
Recall that a p-series 1np \sum \frac{1}{n^p} converges if p>1 p > 1 and diverges if p1 p \le 1 .
Since p=3>1 p = 3 > 1 , the p-series n=11n3 \sum_{n=1}^{\infty} \frac{1}{n^3} converges.
Therefore, the comparison series n=1bn=2n=11n3 \sum_{n=1}^{\infty} b_n = 2 \sum_{n=1}^{\infty} \frac{1}{n^3} also converges (multiplying by a constant doesn't affect convergence).

Step 4: Apply the Direct Comparison Test

We have shown that:
1. 0<an<bn 0 < a_n < b_n for all n1 n \ge 1 , where an=n2(1+cos2(n))n5+3 a_n = \frac{n^2 (1+\cos^2(n))}{n^5+3} and bn=2n3 b_n = \frac{2}{n^3} .
2. The series n=1bn=n=12n3 \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} \frac{2}{n^3} converges.

The Direct Comparison Test (DCT) states that if 0anbn 0 \le a_n \le b_n for all sufficiently large n n , and bn \sum b_n converges, then an \sum a_n must also converge.
Think of it like this: If the terms of your series (ana_n) are always positive but smaller than the terms of a series that adds up to a finite number (bn\sum b_n), then your series must also add up to a finite number.
Since both conditions of the DCT are met, our series an \sum a_n converges.

Step 5: Conclusion

The series n=1n2(1+cos2(n))n5+3 \sum_{n=1}^{\infty} \frac{n^2 (1+\cos^2(n))}{n^5+3} converges based on the Direct Comparison Test with the convergent p-series n=12n3 \sum_{n=1}^{\infty} \frac{2}{n^3} .


The series n=1n2(1+cos2(n))n5+3 \sum_{n=1}^{\infty} \frac{n^2 (1+\cos^2(n))}{n^5+3} converges by the Direct Comparison Test.

The series n=1n2(1+cos2(n))n5+3 \sum_{n=1}^{\infty} \frac{n^2 (1+\cos^2(n))}{n^5+3} converges by the Direct Comparison Test.
Question 3 (b)
(Max Marks: 4)
Determine if the series n=1n3+43n3+n+1 \sum_{n=1}^{\infty} \frac{\sqrt{n^3+4}}{3n^3+n+1} converges or diverges. Explain your reasoning and state the test used.
Series
Series: Comparison Test

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Analyze the Series Terms

Let the terms of the series be an=n3+43n3+n+1 a_n = \frac{\sqrt{n^3+4}}{3n^3+n+1} .
We need to determine if the infinite series n=1an \sum_{n=1}^{\infty} a_n converges or diverges.
For n1 n \ge 1 , the numerator n3+4 \sqrt{n^3+4} is positive and the denominator 3n3+n+1 3n^3+n+1 is positive. Therefore, all terms an a_n are positive (an>0 a_n > 0 ). This allows us to use comparison tests.

Step 2: Determine the Asymptotic Behavior

To choose a suitable comparison series, we examine the behavior of an a_n for large n n . We look at the highest powers of n n in the numerator and denominator.
Numerator: n3+4n3=n3/2 \sqrt{n^3+4} \approx \sqrt{n^3} = n^{3/2}
Denominator: 3n3+n+13n3 3n^3+n+1 \approx 3n^3
So, for large n n , an a_n behaves like:
ann3/23n3=13n33/2=13n3/2
a_n \approx \frac{n^{3/2}}{3n^3} = \frac{1}{3n^{3 - 3/2}} = \frac{1}{3n^{3/2}}

This suggests comparing our series to a p-series with p=3/2 p = 3/2 .

Step 3: Choose a Comparison Series and Test

Based on the behavior for large n n , we choose the comparison series bn \sum b_n where
bn=1n3/2
b_n = \frac{1}{n^{3/2}}

Since an a_n and bn b_n are positive, we can use the Limit Comparison Test (LCT).
The LCT is often effective for series whose terms are ratios of polynomials or involve roots of polynomials, as it focuses on the dominant terms for large n n .

Step 4: Apply the Limit Comparison Test

We need to compute the limit L=limnanbn L = \lim_{n\to\infty} \frac{a_n}{b_n} .
L=limnn3+43n3+n+11n3/2=limnn3/2n3+43n3+n+1=limnn3n3+43n3+n+1(since n3/2=n3)=limnn3(n3+4)3n3+n+1=limnn6+4n33n3+n+1 \begin{align*}
L &= \lim_{n\to\infty} \frac{ \frac{\sqrt{n^3+4}}{3n^3+n+1} }{ \frac{1}{n^{3/2}} } \\
&= \lim_{n\to\infty} \frac{n^{3/2} \sqrt{n^3+4}}{3n^3+n+1} \\
&= \lim_{n\to\infty} \frac{\sqrt{n^3} \sqrt{n^3+4}}{3n^3+n+1} \quad (\text{since } n^{3/2}=\sqrt{n^3}) \\
&= \lim_{n\to\infty} \frac{\sqrt{n^3(n^3+4)}}{3n^3+n+1} \\
&= \lim_{n\to\infty} \frac{\sqrt{n^6+4n^3}}{3n^3+n+1}
\end{align*}

Now, divide both the numerator and the denominator by the highest power of n n in the denominator, which is n3 n^3 . Inside the square root, dividing by n3 n^3 is equivalent to dividing by n6 \sqrt{n^6} .
L=limnn6+4n3/n6(3n3+n+1)/n3=limn(n6+4n3)/n6(3n3/n3)+(n/n3)+(1/n3)=limn1+4/n33+1/n2+1/n3 \begin{align*}
L &= \lim_{n\to\infty} \frac{\sqrt{n^6+4n^3} / \sqrt{n^6}}{(3n^3+n+1) / n^3} \\
&= \lim_{n\to\infty} \frac{\sqrt{(n^6+4n^3)/n^6}}{(3n^3/n^3)+(n/n^3)+(1/n^3)} \\
&= \lim_{n\to\infty} \frac{\sqrt{1+4/n^3}}{3+1/n^2+1/n^3}
\end{align*}

As n n \to \infty , terms like 4/n3 4/n^3 , 1/n2 1/n^2 , and 1/n3 1/n^3 go to 0.
L=1+03+0+0=13=13
L = \frac{\sqrt{1+0}}{3+0+0} = \frac{\sqrt{1}}{3} = \frac{1}{3}


Step 5: Analyze the Comparison Series and Conclude

The limit L=1/3 L = 1/3 is finite and positive (0<L< 0 < L < \infty ). Therefore, the LCT states that our series an \sum a_n and the comparison series bn \sum b_n either both converge or both diverge.
The comparison series is bn=n=11n3/2 \sum b_n = \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} . This is a p-series with p=3/2 p = 3/2 .
Recall that a p-series 1np \sum \frac{1}{n^p} converges if p>1 p > 1 and diverges if p1 p \le 1 .
Since p=3/2=1.5 p = 3/2 = 1.5 , which is greater than 1, the comparison series n=11n3/2 \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} converges.
Because bn \sum b_n converges and 0<L< 0 < L < \infty , the original series an \sum a_n must also converge by the Limit Comparison Test.

Step 6: Conclusion



The series n=1n3+43n3+n+1 \sum_{n=1}^{\infty} \frac{\sqrt{n^3+4}}{3n^3+n+1} converges by the Limit Comparison Test with the convergent p-series n=11n3/2 \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} .

The series n=1n3+43n3+n+1 \sum_{n=1}^{\infty} \frac{\sqrt{n^3+4}}{3n^3+n+1} converges by the Limit Comparison Test with the convergent p-series n=11n3/2 \sum_{n=1}^{\infty} \frac{1}{n^{3/2}} .
Question 3 (c)
(Max Marks: 4)
Determine if the series n=1(1)narcsin(1n2) \sum_{n=1}^{\infty} (-1)^n \arcsin(\frac{1}{n^2}) converges or diverges. Explain your reasoning and state the test used.
Series
Series: Alternating Series Test
Series: Convergence/Divergence

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Identify the Series Type

The series is n=1(1)narcsin(1n2) \sum_{n=1}^{\infty} (-1)^n \arcsin(\frac{1}{n^2}) . The presence of the (1)n (-1)^n factor indicates this is an alternating series.

Step 2: Identify the Test and Terminology

We will use the Alternating Series Test (AST).
The series has the form n=1(1)nbn \sum_{n=1}^{\infty} (-1)^n b_n , where the term bn b_n is:
bn=arcsin(1n2)
b_n = \arcsin\left(\frac{1}{n^2}\right)

The AST requires us to check three conditions for bn b_n :
1. bn>0 b_n > 0 for sufficiently large n n .
2. limnbn=0 \lim_{n\to\infty} b_n = 0 .
3. {bn} \{b_n\} is non-increasing (bn+1bn b_{n+1} \le b_n ) for sufficiently large n n .

Step 3: Check the Conditions of the AST


Condition 1: Positivity
For n1 n \ge 1 , n21 n^2 \ge 1 , so 0<1n21 0 < \frac{1}{n^2} \le 1 . The arcsine function, arcsin(y) \arcsin(y) , is defined and positive for 0<y1 0 < y \le 1 . Therefore, bn=arcsin(1n2)>0 b_n = \arcsin(\frac{1}{n^2}) > 0 for all n1 n \ge 1 . This condition holds.

Condition 2: Limit is Zero
We evaluate the limit of bn b_n as n n \to \infty :
limnbn=limnarcsin(1n2) \begin{align*}
& \lim_{n\to\infty} b_n \\
&= \lim_{n\to\infty} \arcsin\left(\frac{1}{n^2}\right)
\end{align*}

As n n \to \infty , the argument 1n20 \frac{1}{n^2} \to 0 . Since arcsin(x) \arcsin(x) is continuous at x=0 x=0 :
=arcsin(limn1n2)=arcsin(0)=0 \begin{align*}
&= \arcsin\left(\lim_{n\to\infty} \frac{1}{n^2}\right) \\
&= \arcsin(0) \\
&= 0
\end{align*}

This condition holds.

Condition 3: Non-increasing Terms
We need to determine if bn+1bn b_{n+1} \le b_n for sufficiently large n n . That is, is arcsin(1(n+1)2)arcsin(1n2) \arcsin(\frac{1}{(n+1)^2}) \le \arcsin(\frac{1}{n^2}) ?
Consider the function f(x)=arcsin(1x2) f(x) = \arcsin(\frac{1}{x^2}) for x1 x \ge 1 .
We know that for n1 n \ge 1 :
n<n+1
n < n+1

Squaring both sides (since both are positive):
n2<(n+1)2
n^2 < (n+1)^2

Taking reciprocals reverses the inequality:
1(n+1)2<1n2
\frac{1}{(n+1)^2} < \frac{1}{n^2}

Since n1 n \ge 1 , both 1(n+1)2 \frac{1}{(n+1)^2} and 1n2 \frac{1}{n^2} are in the interval (0,1] (0, 1] . The function arcsin(y) \arcsin(y) is strictly increasing on the interval [1,1] [-1, 1] . Therefore:
arcsin(1(n+1)2)<arcsin(1n2)
\arcsin\left(\frac{1}{(n+1)^2}\right) < \arcsin\left(\frac{1}{n^2}\right)

So, bn+1<bn b_{n+1} < b_n for all n1 n \ge 1 . The sequence {bn} \{b_n\} is strictly decreasing. This condition holds.
The key facts used here are that y1/y2 y \mapsto 1/y^2 is decreasing for positive y y , and arcsin \arcsin is an increasing function on its domain.

Step 4: Conclusion from AST

Since all three conditions of the Alternating Series Test are satisfied:
1. bn=arcsin(1n2)>0 b_n = \arcsin(\frac{1}{n^2}) > 0 for n1 n \ge 1 .
2. limnbn=0 \lim_{n\to\infty} b_n = 0 .
3. bn+1<bn b_{n+1} < b_n for n1 n \ge 1 .
The Alternating Series Test guarantees that the series converges.

Step 5: Conclusion



The series n=1(1)narcsin(1n2) \sum_{n=1}^{\infty} (-1)^n \arcsin(\frac{1}{n^2}) converges by the Alternating Series Test.

The series n=1(1)narcsin(1n2) \sum_{n=1}^{\infty} (-1)^n \arcsin(\frac{1}{n^2}) converges by the Alternating Series Test.
Question 4
(Max Marks: 6)
This question is presented in two parts. In Part (a), you will perform an algebraic manipulation involving polynomials. The result you obtain in Part (a) will then be directly used to help you evaluate the integral in Part (b).
Polynomial Long Division
Integrals: u-substitution
integrals: inverse trig
inverse trig functions

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

4. a)
(Max Marks: 3)
Use polynomial long division to write x3+5x22x+1=s(x)(x2+2)+r(x) x^3 + 5x^2 - 2x + 1 = s(x)(x^2 + 2) + r(x) for polynomials s(x) s(x) and r(x) r(x) with deg(r(x))<2 \text{deg}(r(x)) < 2 .
Polynomial Long Division

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Set up the Polynomial Long Division

We want to divide P(x)=x3+5x22x+1 P(x) = x^3 + 5x^2 - 2x + 1 by D(x)=x2+0x+2 D(x) = x^2 + 0x + 2 .
The initial setup is:
      ___________
x^2+2 | x^3 + 5x^2 - 2x + 1


Step 2: Perform the Long Division Algorithm Iteratively


1. First term of quotient: Divide the leading term of the dividend (x3 x^3 ) by the leading term of the divisor (x2 x^2 ): x3x2=x \frac{x^3}{x^2} = x . Write x x in the quotient area.
        x             
___________
x^2+2 | x^3 + 5x^2 - 2x + 1


2. First multiplication: Multiply the term x x by the entire divisor (x2+2 x^2 + 2 ): x(x2+2)=x3+2x x(x^2 + 2) = x^3 + 2x . Write this result below the dividend, aligning terms by power.
        x             
___________
x^2+2 | x^3 + 5x^2 - 2x + 1
x^3 + 2x


3. First subtraction: Subtract the result (x3+2x) (x^3 + 2x) from the dividend. Draw a line and write the result below. Remember to subtract corresponding terms: (x3x3=0) (x^3 - x^3 = 0) , (5x20x2=5x2) (5x^2 - 0x^2 = 5x^2) , (2x2x=4x) (-2x - 2x = -4x) . Bring down the next term (+1 +1 ) from the dividend.
        x             
___________
x^2+2 | x^3 + 5x^2 - 2x + 1
-(x^3 + 2x)
________________
5x^2 - 4x + 1


4. Second term of quotient: Divide the leading term of the new remainder (5x2 5x^2 ) by the leading term of the divisor (x2 x^2 ): 5x2x2=5 \frac{5x^2}{x^2} = 5 . Write +5 +5 in the quotient area.
        x   + 5       
___________
x^2+2 | x^3 + 5x^2 - 2x + 1
-(x^3 + 2x)
________________
5x^2 - 4x + 1


5. Second multiplication: Multiply the term +5 +5 by the divisor (x2+2 x^2 + 2 ): 5(x2+2)=5x2+10 5(x^2 + 2) = 5x^2 + 10 . Write this result below the current remainder, aligning terms.
        x   + 5       
___________
x^2+2 | x^3 + 5x^2 - 2x + 1
-(x^3 + 2x)
________________
5x^2 - 4x + 1
5x^2 + 10


6. Second subtraction: Subtract the result (5x2+10) (5x^2 + 10) from (5x24x+1) (5x^2 - 4x + 1) . Draw a line and write the final result. (5x25x2=0) (5x^2 - 5x^2 = 0) , (4x0x=4x) (-4x - 0x = -4x) , (110=9) (1 - 10 = -9) . The result is 4x9 -4x - 9 .
        x   + 5       <-- Quotient s(x)
___________
x^2+2 | x^3 + 5x^2 - 2x + 1
-(x^3 + 2x)
________________
5x^2 - 4x + 1
-(5x^2 + 10)
____________
-4x - 9 <-- Remainder r(x)

The degree of this result (4x9 -4x - 9 , degree 1) is less than the degree of the divisor (x2+2 x^2 + 2 , degree 2), so the algorithm stops.
Double-check each subtraction step carefully, especially handling signs and aligning terms correctly (like the +2x+2x under 2x-2x and +10+10 under +1+1).

Step 3: Identify Quotient and Remainder

From the final division layout:
The quotient is s(x)=x+5 s(x) = x + 5 .
The remainder is r(x)=4x9 r(x) = -4x - 9 .

The degree of r(x) r(x) is 1, which is less than the degree of the divisor (2 2 ). The condition is satisfied.

The result is: x3+5x22x+1=(x+5)(x2+2)+(4x9) x^3 + 5x^2 - 2x + 1 = (x + 5)(x^2 + 2) + (-4x - 9) .

Step 4: Conclusion



Using polynomial long division, we found the quotient s(x)=x+5 s(x) = x + 5 and the remainder r(x)=4x9 r(x) = -4x - 9 . The degree of r(x) r(x) is 1, which is less than 2.
So, x3+5x22x+1=(x+5)(x2+2)4x9 x^3 + 5x^2 - 2x + 1 = (x + 5)(x^2 + 2) - 4x - 9 .

Using polynomial long division, we found the quotient s(x)=x+5 s(x) = x + 5 and the remainder r(x)=4x9 r(x) = -4x - 9 . The degree of r(x) r(x) is 1, which is less than 2.
So, x3+5x22x+1=(x+5)(x2+2)4x9 x^3 + 5x^2 - 2x + 1 = (x + 5)(x^2 + 2) - 4x - 9 .
4. b)
(Max Marks: 3)
Use the result from Part A (x3+5x22x+1x2+2=(x+5)+4x9x2+2 \frac{x^3 + 5x^2 - 2x + 1}{x^2 + 2} = (x + 5) + \frac{-4x - 9}{x^2 + 2} ) to find x3+5x22x+1x2+2dx \int \frac{x^3 + 5x^2 - 2x + 1}{x^2 + 2} \, dx .
integrals
Integrals: Improper
Integrals: u-substitution

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Rewrite the Integral using the Result from Part A

Using the quotient s(x)=x+5 s(x) = x+5 and remainder r(x)=4x9 r(x) = -4x-9 found previously, we rewrite the integrand:
x3+5x22x+1x2+2dx=((x+5)+4x9x2+2)dx \begin{align*}
& \int \frac{x^3 + 5x^2 - 2x + 1}{x^2 + 2} \, dx \\
&= \int \left( (x + 5) + \frac{-4x - 9}{x^2 + 2} \right) \, dx
\end{align*}

We can split this into the sum of two integrals:
=(x+5)dx+4x9x2+2dx
= \int (x + 5) \, dx + \int \frac{-4x - 9}{x^2 + 2} \, dx


Step 2: Integrate the Polynomial Part

The first integral is a simple polynomial integration:
(x+5)dx=x22+5x+C1 \begin{align}
& \int (x + 5) \, dx \\
&= \frac{x^2}{2} + 5x + C_1
\end{align}


Step 3: Integrate the Rational Part

The second integral involves the proper rational function 4x9x2+2 \frac{-4x - 9}{x^2 + 2} . Since the denominator x2+2 x^2+2 is an irreducible quadratic, we split the fraction based on the derivative of the denominator and a constant term. The derivative of x2+2 x^2+2 is 2x 2x .
4x9x2+2dx=(4xx2+2+9x2+2)dx=4xx2+2dx91x2+2dx \begin{align*}
& \int \frac{-4x - 9}{x^2 + 2} \, dx \\
&= \int \left( \frac{-4x}{x^2 + 2} + \frac{-9}{x^2 + 2} \right) \, dx \\
&= -4 \int \frac{x}{x^2 + 2} \, dx - 9 \int \frac{1}{x^2 + 2} \, dx
\end{align*}

This split is strategic: the first part (xx2+2 \propto \frac{x}{x^2+2} ) can be solved with a u-substitution for the denominator, leading to a logarithm. The second part (1x2+2 \propto \frac{1}{x^2+2} ) matches the arctangent integration form.

Step 3a: Evaluate xx2+2dx \int \frac{x}{x^2 + 2} \, dx

Use u-substitution. Let u=x2+2 u = x^2 + 2 . Then du=2xdx du = 2x \, dx , which means xdx=12du x \, dx = \frac{1}{2} du .
xx2+2dx=1u(12du)=121udu=12lnu+C2=12ln(x2+2)+C2 \begin{align*}
& \int \frac{x}{x^2 + 2} \, dx \\
&= \int \frac{1}{u} \left( \frac{1}{2} du \right) \\
&= \frac{1}{2} \int \frac{1}{u} \, du \\
&= \frac{1}{2} \ln|u| + C_2 \\
&= \frac{1}{2} \ln(x^2 + 2) + C_2
\end{align*}

(Absolute value is dropped since x2+2 x^2+2 is always positive).
Therefore, the first part of the rational integral evaluates to 4xx2+2dx=2ln(x2+2) -4 \int \frac{x}{x^2 + 2} \, dx = -2 \ln(x^2 + 2) .

Step 3b: Evaluate 1x2+2dx \int \frac{1}{x^2 + 2} \, dx

This matches the arctangent integration formula 1v2+a2dv=1aarctan(va)+C \int \frac{1}{v^2 + a^2} \, dv = \frac{1}{a} \arctan(\frac{v}{a}) + C .
Here, v=x v = x and a2=2 a^2 = 2 , so a=2 a = \sqrt{2} .
1x2+2dx=1x2+(2)2dx=12arctan(x2)+C3 \begin{align*}
& \int \frac{1}{x^2 + 2} \, dx \\
&= \int \frac{1}{x^2 + (\sqrt{2})^2} \, dx \\
&= \frac{1}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right) + C_3
\end{align*}

Therefore, the second part of the rational integral evaluates to 91x2+2dx=92arctan(x2) -9 \int \frac{1}{x^2 + 2} \, dx = -\frac{9}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right) .

Step 4: Combine All Parts

Combine the results from Step 2, Step 3a, and Step 3b. Don't forget a single constant of integration C C at the end. The integral is:
x3+5x22x+1x2+2dx=(x22+5x)+(2ln(x2+2))+(92arctan(x2))+C \begin{align*}
& \int \frac{x^3 + 5x^2 - 2x + 1}{x^2 + 2} \, dx \\
&= \left( \frac{x^2}{2} + 5x \right) \\
&\quad + \left( -2 \ln(x^2 + 2) \right) \\
&\quad + \left( -\frac{9}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right) \right) + C
\end{align*}


Step 5: Conclusion



The integral evaluates to:
x22+5x2ln(x2+2)92arctan(x2)+C \begin{align*}
&\frac{x^2}{2} + 5x - 2 \ln(x^2 + 2) \\
&\quad - \frac{9}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right) + C
\end{align*}


The integral evaluates to:
x22+5x2ln(x2+2)92arctan(x2)+C \begin{align*}
&\frac{x^2}{2} + 5x - 2 \ln(x^2 + 2) \\
&\quad - \frac{9}{\sqrt{2}} \arctan\left(\frac{x}{\sqrt{2}}\right) + C
\end{align*}

Question 5
(Max Marks: 6)
Find the indefinite integral x24x6dx \int \frac{x^2}{\sqrt{4-x^6}} \, dx .
integrals
Integrals: Improper
integrals: inverse trig
Integrals: u-substitution

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Analyze the Integrand and Choose a Technique

The integral is x24x6dx \int \frac{x^2}{\sqrt{4-x^6}} \, dx .

The denominator contains 4x6 \sqrt{4-x^6} . This looks similar to the form a2u2 \sqrt{a^2 - u^2} , which appears in the derivative of arcsin and arccos.

Let's try to match the form a2u2 \sqrt{a^2 - u^2} . We can write 4=22 4 = 2^2 and x6=(x3)2 x^6 = (x^3)^2 . So, the term inside the square root is 22(x3)2 2^2 - (x^3)^2 .

This suggests choosing a=2 a=2 and making the substitution u=x3 u = x^3 .

Let's check the derivative: ddx(x3)=3x2 \frac{d}{dx}(x^3) = 3x^2 . The numerator of the integrand is x2 x^2 , which is proportional to this derivative.

This confirms that u-substitution with u=x3 u = x^3 is a good strategy, aiming for the arcsine integral form.

Step 2: Perform the u-Substitution

Let u=x3 u = x^3 .
Find the differential du du :
du=ddx(x3)dx=3x2dx
du = \frac{d}{dx}(x^3) \, dx = 3x^2 \, dx

Our integral contains the term x2dx x^2 \, dx . Solve for it from the differential:
x2dx=13du
x^2 \, dx = \frac{1}{3} du

Now substitute u=x3 u = x^3 (so u2=x6 u^2 = x^6 ) and x2dx=13du x^2 \, dx = \frac{1}{3} du into the integral:
x24x6dx=14(x3)2(x2dx)=14u2(13du)=1314u2du=13122u2du \begin{align*}
& \int \frac{x^2}{\sqrt{4-x^6}} \, dx \\
&= \int \frac{1}{\sqrt{4-(x^3)^2}} (x^2 \, dx) \\
&= \int \frac{1}{\sqrt{4-u^2}} \left( \frac{1}{3} du \right) \\
&= \frac{1}{3} \int \frac{1}{\sqrt{4-u^2}} \, du \\
&= \frac{1}{3} \int \frac{1}{\sqrt{2^2-u^2}} \, du
\end{align*}


Step 3: Integrate with Respect to u

The integral is now in a standard form.
Recall the integration rule involving arcsine: 1a2u2du=arcsin(ua)+C \int \frac{1}{\sqrt{a^2-u^2}} \, du = \arcsin\left(\frac{u}{a}\right) + C .
In our case, a=2 a = 2 . Applying this rule:
13122u2du=13arcsin(u2)+C \begin{align*}
& \frac{1}{3} \int \frac{1}{\sqrt{2^2-u^2}} \, du \\
&= \frac{1}{3} \arcsin\left(\frac{u}{2}\right) + C
\end{align*}


Step 4: Substitute Back to x

Replace u u with its expression in terms of x x , which is u=x3 u = x^3 .
13arcsin(x32)+C
\frac{1}{3} \arcsin\left(\frac{x^3}{2}\right) + C


Step 5: Conclusion

The indefinite integral is 13arcsin(x32)+C \frac{1}{3} \arcsin(\frac{x^3}{2}) + C . This result is concise enough for the KaTeX `\boxed{}`.
x24x6dx=13arcsin(x32)+C
\boxed{ \int \frac{x^2}{\sqrt{4-x^6}} \, dx = \frac{1}{3} \arcsin\left(\frac{x^3}{2}\right) + C }
x24x6dx=13arcsin(x32)+C
\boxed{ \int \frac{x^2}{\sqrt{4-x^6}} \, dx = \frac{1}{3} \arcsin\left(\frac{x^3}{2}\right) + C }
Question 6
(Max Marks: 6)
The velocity of a particle moving in a straight line is given by v(t)=3t26t v(t) = 3t^2 - 6t . What is the total distance traveled from t=0 t=0 to t=3 t=3 ?
integrals
Integrals: distance

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Understand Total Distance vs. Displacement

Total distance traveled over an interval [a,b] [a, b] is found by integrating the speed, which is the absolute value of velocity, v(t) |v(t)| .
Total Distance=abv(t)dt \text{Total Distance} = \int_{a}^{b} |v(t)| \, dt
Displacement, on the other hand, is abv(t)dt \int_{a}^{b} v(t) \, dt . We need the total distance.

Step 2: Find Where Velocity Changes Sign

To evaluate 033t26tdt \int_{0}^{3} |3t^2 - 6t| \, dt , we first need to find where the velocity v(t)=3t26t v(t) = 3t^2 - 6t might change sign within the interval [0,3] [0, 3] . This occurs where v(t)=0 v(t) = 0 .
3t26t=03t(t2)=0 \begin{align} 3t^2 - 6t &= 0 \\ 3t(t - 2) &= 0 \end{align}
The velocity is zero at t=0 t = 0 and t=2 t = 2 .
The time t=2 t = 2 is within our interval [0,3] [0, 3] . This means the particle might change direction at t=2 t=2 , so we need to check the sign of v(t) v(t) on the subintervals [0,2] [0, 2] and [2,3] [2, 3] .

Check sign on (0,2) (0, 2) : Choose a test value, e.g., t=1 t=1 .
v(1)=3(1)26(1)=36=3 v(1) = 3(1)^2 - 6(1) = 3 - 6 = -3
Since v(1)<0 v(1) < 0 , the velocity is negative on (0,2) (0, 2) . Therefore, v(t)=(3t26t)=6t3t2 |v(t)| = -(3t^2 - 6t) = 6t - 3t^2 on this interval.

Check sign on (2,3) (2, 3) : Choose a test value, e.g., t=2.5 t=2.5 .
v(2.5)=3(2.5)26(2.5)=3(6.25)15=18.7515=3.75 v(2.5) = 3(2.5)^2 - 6(2.5) = 3(6.25) - 15 = 18.75 - 15 = 3.75
Since v(2.5)>0 v(2.5) > 0 , the velocity is positive on (2,3) (2, 3) . Therefore, v(t)=3t26t |v(t)| = 3t^2 - 6t on this interval.

Step 3: Split the Integral Based on Sign Changes

We split the integral for total distance at t=2 t=2 :
Total Distance=033t26tdt=023t26tdt+233t26tdt=02(6t3t2)dt+23(3t26t)dt \begin{align*} \text{Total Distance} &= \int_{0}^{3} |3t^2 - 6t| \, dt \\ &= \int_{0}^{2} |3t^2 - 6t| \, dt + \int_{2}^{3} |3t^2 - 6t| \, dt \\ &= \int_{0}^{2} (6t - 3t^2) \, dt + \int_{2}^{3} (3t^2 - 6t) \, dt \end{align*}
This splitting is crucial. Integrating v(t) v(t) directly from 0 to 3 would give displacement, not total distance. We integrate v(t) -v(t) where velocity is negative and v(t) v(t) where velocity is positive.

Step 4: Evaluate the Definite Integrals

Find the antiderivatives:
Antiderivative of 6t3t2 6t - 3t^2 is 6t223t33=3t2t3 6\frac{t^2}{2} - 3\frac{t^3}{3} = 3t^2 - t^3 .
Antiderivative of 3t26t 3t^2 - 6t is 3t336t22=t33t2 3\frac{t^3}{3} - 6\frac{t^2}{2} = t^3 - 3t^2 .

Evaluate the first integral:
02(6t3t2)dt=[3t2t3]02=(3(2)2(2)3)(3(0)2(0)3)=(3(4)8)(00)=(128)0=4 \begin{align*} & \int_{0}^{2} (6t - 3t^2) \, dt \\ &= [3t^2 - t^3]_{0}^{2} \\ &= (3(2)^2 - (2)^3) - (3(0)^2 - (0)^3) \\ &= (3(4) - 8) - (0 - 0) \\ &= (12 - 8) - 0 \\ &= 4 \end{align*}
Evaluate the second integral:
23(3t26t)dt=[t33t2]23=((3)33(3)2)((2)33(2)2)=(273(9))(83(4))=(2727)(812)=0(4)=4 \begin{align*} & \int_{2}^{3} (3t^2 - 6t) \, dt \\ &= [t^3 - 3t^2]_{2}^{3} \\ &= ((3)^3 - 3(3)^2) - ((2)^3 - 3(2)^2) \\ &= (27 - 3(9)) - (8 - 3(4)) \\ &= (27 - 27) - (8 - 12) \\ &= 0 - (-4) \\ &= 4 \end{align*}

Step 5: Calculate the Total Distance

Add the results from the two integrals:
Total Distance=4+4=8 \text{Total Distance} = 4 + 4 = 8

Step 6: Conclusion

The total distance traveled by the particle from t=0 t=0 to t=3 t=3 is 8.
8
\boxed{ 8 }
8
\boxed{ 8 }
Question 7
(Max Marks: 4)
Consider the parametric curve x(t)=t21 x(t) = t^2 - 1 , y(t)=t33t y(t) = t^3 - 3t . At what values of t t is the tangent line to the curve horizontal?
Parametric Equations

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Understand Condition for Horizontal Tangent

A parametric curve (x(t),y(t)) (x(t), y(t)) has a tangent line with slope dydx \frac{dy}{dx} . The slope is calculated using the derivatives with respect to the parameter t t :
dydx=dy/dtdx/dt
\frac{dy}{dx} = \frac{dy/dt}{dx/dt}

A horizontal tangent line occurs when the slope dydx \frac{dy}{dx} is equal to zero. This happens when the numerator is zero, but the denominator is non-zero.
Condition for Horizontal Tangent: dydt=0 \frac{dy}{dt} = 0 and dxdt0 \frac{dx}{dt} \neq 0 .
If both dy/dt dy/dt and dx/dt dx/dt are zero at the same value of t t , the slope is indeterminate (0/0 0/0 ) and requires further analysis (it might be a cusp or corner, not a horizontal tangent).

Step 2: Calculate Derivatives dx/dt dx/dt and dy/dt dy/dt

Given the parametric equations:
x(t)=t21 x(t) = t^2 - 1
y(t)=t33t y(t) = t^3 - 3t
Calculate the derivatives with respect to t t , using `align*` to suppress equation numbers:
dxdt=ddt(t21)=2t \begin{align*}
\frac{dx}{dt} &= \frac{d}{dt}(t^2 - 1) \\
&= 2t
\end{align*}

dydt=ddt(t33t)=3t23 \begin{align*}
\frac{dy}{dt} &= \frac{d}{dt}(t^3 - 3t) \\
&= 3t^2 - 3
\end{align*}


Step 3: Find Values of t t Where dy/dt=0 dy/dt = 0

Set the expression for dy/dt dy/dt equal to zero and solve for t t :
3t23=03(t21)=03(t1)(t+1)=0 \begin{align*}
3t^2 - 3 &= 0 \\
3(t^2 - 1) &= 0 \\
3(t - 1)(t + 1) &= 0
\end{align*}

This equation holds if t1=0 t - 1 = 0 or t+1=0 t + 1 = 0 .
The potential values of t t for a horizontal tangent are t=1 t = 1 and t=1 t = -1 .

Step 4: Check if dx/dt0 dx/dt \neq 0 at These Values

We must ensure that the denominator dx/dt dx/dt is not also zero at t=1 t = 1 and t=1 t = -1 .
Use the expression dx/dt=2t dx/dt = 2t .

Check t=1 t = 1 :
dxdtt=1=2(1)=2
\frac{dx}{dt} \bigg|_{t=1} = 2(1) = 2

Since dx/dt=20 dx/dt = 2 \neq 0 at t=1 t = 1 , the curve has a horizontal tangent line at t=1 t = 1 .

Check t=1 t = -1 :
dxdtt=1=2(1)=2
\frac{dx}{dt} \bigg|_{t=-1} = 2(-1) = -2

Since dx/dt=20 dx/dt = -2 \neq 0 at t=1 t = -1 , the curve has a horizontal tangent line at t=1 t = -1 .

Both values of t t where dy/dt=0 dy/dt = 0 resulted in dx/dt0 dx/dt \neq 0 , so both correspond to horizontal tangents.

Step 5: Conclusion

The values of t t at which the tangent line to the curve is horizontal are t=1 t = 1 and t=1 t = -1 .
t=1,t=1
\boxed{ t = 1, t = -1 }
t=1,t=1
\boxed{ t = 1, t = -1 }
Question 8
(Max Marks: 6)
Compute 02x2dx \int_{0}^{2} x^2 dx directly from the definition of the integral, by using right end-points as sample points.
Riemann Sums
integrals

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Recall the Definition of the Definite Integral

The definition of the definite integral as a limit of Riemann sums is:
abf(x)dx=limni=1nf(xi)Δx
\int_{a}^{b} f(x) \, dx = \lim_{n\to\infty} \sum_{i=1}^{n} f(x_i^*) \Delta x

Where:
- [a,b] [a, b] is the interval of integration.
- n n is the number of subintervals.
- Δx=ban \Delta x = \frac{b-a}{n} is the width of each subinterval.
- xi x_i^* is the sample point in the i i -th subinterval.

Step 2: Determine Parameters for This Problem

For the integral 02x2dx \int_{0}^{2} x^2 dx :
- The function is f(x)=x2 f(x) = x^2 .
- The interval is [a,b]=[0,2] [a, b] = [0, 2] .
- The width of each subinterval is Δx=20n=2n \Delta x = \frac{2-0}{n} = \frac{2}{n} .
- We are using right endpoints as sample points. The right endpoint of the i i -th subinterval [xi1,xi] [x_{i-1}, x_i] is xi x_i . The formula is xi=a+iΔx x_i = a + i \Delta x .
xi=0+i(2n)=2in x_i = 0 + i \left(\frac{2}{n}\right) = \frac{2i}{n}

Step 3: Evaluate the Function at the Sample Points

We need f(xi)=f(xi)=f(2in) f(x_i^*) = f(x_i) = f(\frac{2i}{n}) .
f(xi)=f(2in)=(2in)2=4i2n2
f(x_i) = f\left(\frac{2i}{n}\right) = \left(\frac{2i}{n}\right)^2 = \frac{4i^2}{n^2}


Step 4: Set Up and Simplify the Riemann Sum

Now substitute these components into the Riemann sum formula:
Rn=i=1nf(xi)Δx=i=1n(4i2n2)(2n)=i=1n8i2n3 \begin{align*}
R_n &= \sum_{i=1}^{n} f(x_i) \Delta x \\
&= \sum_{i=1}^{n} \left( \frac{4i^2}{n^2} \right) \left( \frac{2}{n} \right) \\
&= \sum_{i=1}^{n} \frac{8i^2}{n^3}
\end{align*}

We can factor out terms that do not depend on the summation index i i :
Rn=8n3i=1ni2
R_n = \frac{8}{n^3} \sum_{i=1}^{n} i^2

The key here is to isolate the sum involving i i so we can apply standard summation formulas.

Step 5: Apply Summation Formulas

We use the formula for the sum of the first n n squares:
i=1ni2=n(n+1)(2n+1)6 \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}
Substitute this into the expression for Rn R_n :
Rn=8n3(n(n+1)(2n+1)6)=86n(n+1)(2n+1)n3=43n(n+1)(2n+1)nnn=43(nn)(n+1n)(2n+1n)=43(1)(1+1n)(2+1n) \begin{align*}
R_n &= \frac{8}{n^3} \left( \frac{n(n+1)(2n+1)}{6} \right) \\
&= \frac{8}{6} \frac{n(n+1)(2n+1)}{n^3} \\
&= \frac{4}{3} \frac{n(n+1)(2n+1)}{n \cdot n \cdot n} \\
&= \frac{4}{3} \left( \frac{n}{n} \right) \left( \frac{n+1}{n} \right) \left( \frac{2n+1}{n} \right) \\
&= \frac{4}{3} (1) \left( 1 + \frac{1}{n} \right) \left( 2 + \frac{1}{n} \right)
\end{align*}

Splitting the fraction n(n+1)(2n+1)n3 \frac{n(n+1)(2n+1)}{n^3} into factors nn \frac{n}{n} , n+1n \frac{n+1}{n} , 2n+1n \frac{2n+1}{n} makes taking the limit easier.

Step 6: Evaluate the Limit

Finally, we compute the definite integral by taking the limit of the Riemann sum Rn R_n as n n \to \infty :
02x2dx=limnRn=limn[43(1+1n)(2+1n)] \begin{align*}
& \int_{0}^{2} x^2 dx \\
&= \lim_{n\to\infty} R_n \\
&= \lim_{n\to\infty} \left[ \frac{4}{3} \left( 1 + \frac{1}{n} \right) \left( 2 + \frac{1}{n} \right) \right]
\end{align*}

As n n \to \infty , the terms 1n0 \frac{1}{n} \to 0 .
=43(1+0)(2+0)=43(1)(2)=83 \begin{align*}
&= \frac{4}{3} (1 + 0) (2 + 0) \\
&= \frac{4}{3} (1) (2) \\
&= \frac{8}{3}
\end{align*}


Step 7: Conclusion

The value of the definite integral computed from the definition is 83 \frac{8}{3} .
83
\boxed{ \frac{8}{3} }
83
\boxed{ \frac{8}{3} }
Question 9
(Max Marks: 8)
Find the area of the surface of revolution obtained by rotating the curve y=coshx y = \cosh x for 0x1 0 \le x \le 1 about the x-axis.
Integrals: Surface Area

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Recall the Surface Area Formula

The formula for the area of a surface generated by rotating a curve y=f(x) y=f(x) from x=a x=a to x=b x=b about the x-axis is:
S=ab2πy1+(dydx)2dx
S = \int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx

We need to ensure y0 y \ge 0 on the interval. Since coshx=ex+ex2 \cosh x = \frac{e^x+e^{-x}}{2} involves positive terms, coshx>0 \cosh x > 0 for all x x , so the condition holds.

Step 2: Find the Derivative dy/dx dy/dx

The function is y=coshx y = \cosh x .
Its derivative is:
dydx=ddx(coshx)=sinhx
\frac{dy}{dx} = \frac{d}{dx}(\cosh x) = \sinh x

Where sinhx=exex2 \sinh x = \frac{e^x-e^{-x}}{2} .

Step 3: Calculate and Simplify 1+(dy/dx)2 \sqrt{1 + (dy/dx)^2}

First, find (dydx)2 (\frac{dy}{dx})^2 :
(dydx)2=(sinhx)2=sinh2x
\left(\frac{dy}{dx}\right)^2 = (\sinh x)^2 = \sinh^2 x

Now, add 1:
1+(dydx)2=1+sinh2x
1 + \left(\frac{dy}{dx}\right)^2 = 1 + \sinh^2 x

Recall the fundamental identity for hyperbolic functions: cosh2xsinh2x=1 \cosh^2 x - \sinh^2 x = 1 . Rearranging gives 1+sinh2x=cosh2x 1 + \sinh^2 x = \cosh^2 x .
Using this identity, we get a perfect square:
1+(dydx)2=cosh2x
1 + \left(\frac{dy}{dx}\right)^2 = \cosh^2 x

Now take the square root:
1+(dydx)2=cosh2x=coshx
\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \sqrt{\cosh^2 x} = |\cosh x|

Since coshx \cosh x is always positive, coshx=coshx |\cosh x| = \cosh x .
1+(dydx)2=coshx
\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \cosh x

This simplification is key, similar to how the square root might simplify in other surface area problems.

Step 4: Set Up the Surface Area Integral

Substitute y=coshx y = \cosh x , 1+(dy/dx)2=coshx \sqrt{1+(dy/dx)^2} = \cosh x , a=0 a=0 , and b=1 b=1 into the surface area formula:
S=012πy1+(dydx)2dx=012π(coshx)(coshx)dx=2π01cosh2xdx \begin{align*}
S &= \int_{0}^{1} 2\pi y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx \\
&= \int_{0}^{1} 2\pi (\cosh x) (\cosh x) \, dx \\
&= 2\pi \int_{0}^{1} \cosh^2 x \, dx
\end{align*}


Step 5: Evaluate the Integral

To integrate cosh2x \cosh^2 x , we use another hyperbolic identity.
Recall the power-reducing identity: cosh2x=1+cosh(2x)2 \cosh^2 x = \frac{1 + \cosh(2x)}{2} .
Substitute this into the integral:
S=2π01(1+cosh(2x)2)dx=π01(1+cosh(2x))dx \begin{align*}
S &= 2\pi \int_{0}^{1} \left( \frac{1 + \cosh(2x)}{2} \right) \, dx \\
&= \pi \int_{0}^{1} (1 + \cosh(2x)) \, dx
\end{align*}

Now integrate term by term. Let F(x) F(x) be the antiderivative:
F(x)=x+sinh(2x)2
F(x) = x + \frac{\sinh(2x)}{2}

We need to evaluate S=π[F(x)]01=π(F(1)F(0)) S = \pi [ F(x) ]_{0}^{1} = \pi ( F(1) - F(0) ) .
Let's evaluate F(1) F(1) and F(0) F(0) separately:
F(1)=(1)+sinh(2(1))2=1+sinh(2)2 \begin{align*} F(1) &= (1) + \frac{\sinh(2(1))}{2} \\ &= 1 + \frac{\sinh(2)}{2} \end{align*}
F(0)=(0)+sinh(2(0))2=0+sinh(0)2 \begin{align*} F(0) &= (0) + \frac{\sinh(2(0))}{2} \\ &= 0 + \frac{\sinh(0)}{2} \end{align*}
Since sinh(0)=e0e02=112=0 \sinh(0) = \frac{e^0-e^{-0}}{2} = \frac{1-1}{2} = 0 :
F(0)=0+02=0
F(0) = 0 + \frac{0}{2} = 0

Now substitute these back:
S=π(F(1)F(0))=π((1+sinh(2)2)0)=π(1+sinh(2)2) \begin{align*}
S &= \pi ( F(1) - F(0) ) \\
&= \pi \left( \left( 1 + \frac{\sinh(2)}{2} \right) - 0 \right) \\
&= \pi \left( 1 + \frac{\sinh(2)}{2} \right)
\end{align*}

(You could also write sinh(2) \sinh(2) as e2e22 \frac{e^2-e^{-2}}{2} ).

Step 6: Conclusion

The area of the surface of revolution is π(1+12sinh(2)) \pi (1 + \frac{1}{2}\sinh(2)) .
S=π(1+sinh(2)2)
\boxed{ S = \pi \left( 1 + \frac{\sinh(2)}{2} \right) }
S=π(1+sinh(2)2)
\boxed{ S = \pi \left( 1 + \frac{\sinh(2)}{2} \right) }
Question 10
(Max Marks: 12)
This question is presented in three parts, designed to guide you through a sequence of related calculus concepts. In Part (a), you will use differentiation to verify a standard integration formula. This result, or the method used, may prove useful for evaluating the more complex integral in Part (b). The integral from Part (b) is a common one that appears in various applications, such as calculating the arc length requested in Part (c).
Integrals: Arc Length

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

10. a)
Differentiate ln(secθ+tanθ) \ln(\sec \theta + \tan \theta) with respect to θ \theta (assuming secθ+tanθ>0 \sec\theta + \tan\theta > 0 ) and show that it equals secθ \sec \theta . Use this to state the indefinite integral secθdθ \int \sec \theta \, d\theta .
trig derivatives

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Apply the Chain Rule for Differentiation

We need to differentiate f(θ)=ln(secθ+tanθ) f(\theta) = \ln(\sec \theta + \tan \theta) with respect to θ \theta .
Let u=secθ+tanθ u = \sec \theta + \tan \theta . Then f(θ)=ln(u) f(\theta) = \ln(u) .
The chain rule states dfdθ=dfdududθ \frac{df}{d\theta} = \frac{df}{du} \cdot \frac{du}{d\theta} .
We have dfdu=ddu(lnu)=1u \frac{df}{du} = \frac{d}{du}(\ln u) = \frac{1}{u} .
We need to find dudθ \frac{du}{d\theta} .

Step 2: Find the Derivative of the Inner Function

Find the derivative of u=secθ+tanθ u = \sec \theta + \tan \theta with respect to θ \theta .
Recall the derivatives: ddθ(secθ)=secθtanθ \frac{d}{d\theta}(\sec \theta) = \sec \theta \tan \theta and ddθ(tanθ)=sec2θ \frac{d}{d\theta}(\tan \theta) = \sec^2 \theta .
dudθ=ddθ(secθ+tanθ)=ddθ(secθ)+ddθ(tanθ)=secθtanθ+sec2θ \begin{align*}
\frac{du}{d\theta} &= \frac{d}{d\theta}(\sec \theta + \tan \theta) \\
&= \frac{d}{d\theta}(\sec \theta) + \frac{d}{d\theta}(\tan \theta) \\
&= \sec \theta \tan \theta + \sec^2 \theta
\end{align*}

We can factor out secθ \sec \theta from this expression:
dudθ=secθ(tanθ+secθ)
\frac{du}{d\theta} = \sec \theta (\tan \theta + \sec \theta)


Step 3: Combine using the Chain Rule

Now substitute dfdu=1u \frac{df}{du} = \frac{1}{u} and dudθ \frac{du}{d\theta} back into the chain rule formula:
dfdθ=dfdududθ=1u(secθ(tanθ+secθ)) \begin{align*}
\frac{df}{d\theta} &= \frac{df}{du} \cdot \frac{du}{d\theta} \\
&= \frac{1}{u} \cdot (\sec \theta (\tan \theta + \sec \theta))
\end{align*}

Substitute back u=secθ+tanθ u = \sec \theta + \tan \theta :
dfdθ=1secθ+tanθ(secθ(tanθ+secθ))=secθ(secθ+tanθ)secθ+tanθ=secθ \begin{align*}
\frac{df}{d\theta} &= \frac{1}{\sec \theta + \tan \theta} \cdot (\sec \theta (\tan \theta + \sec \theta)) \\
&= \frac{\sec \theta (\sec \theta + \tan \theta)}{\sec \theta + \tan \theta} \\
&= \sec \theta
\end{align*}

We have shown that ddθ(ln(secθ+tanθ))=secθ \frac{d}{d\theta}(\ln(\sec \theta + \tan \theta)) = \sec \theta .

Note: The assumption secθ+tanθ>0 \sec\theta + \tan\theta > 0 allows us to omit the absolute value within the logarithm for the differentiation step. The general antiderivative requires the absolute value: ln(secθ+tanθ) \ln(|\sec \theta + \tan \theta|) .

Step 4: State the Indefinite Integral

Since differentiation and integration are inverse processes, the result from Step 3 directly implies the indefinite integral formula:
secθdθ=ln(secθ+tanθ)+C
\int \sec \theta \, d\theta = \ln(|\sec \theta + \tan \theta|) + C


Step 5: Conclusion for Part A



We have shown by differentiation that ddθ(ln(secθ+tanθ))=secθ \frac{d}{d\theta}(\ln(\sec \theta + \tan \theta)) = \sec \theta . This confirms the indefinite integral formula:
secθdθ=ln(secθ+tanθ)+C \int \sec \theta \, d\theta = \ln(|\sec \theta + \tan \theta|) + C
See walkthrough
10. b)
Find the indefinite integral sec3θdθ \int \sec^3 \theta \, d\theta .
Integrals: Integration By Parts
integrals

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Choose an Integration Technique

The integral sec3θdθ \int \sec^3 \theta \, d\theta is a standard but non-trivial integral involving a power of a trigonometric function. It's typically solved using Integration by Parts. The formula is udv=uvvdu \int u \, dv = uv - \int v \, du .

Step 2: Set Up Integration by Parts

To apply the formula, we need to split the integrand sec3θ \sec^3 \theta into two parts, u u and dv dv . A useful split is:
sec3θ=secθsec2θ \sec^3 \theta = \sec \theta \cdot \sec^2 \theta
Let:
u=secθ u = \sec \theta
dv=sec2θdθ dv = \sec^2 \theta \, d\theta
Now, find du du by differentiating u u , and find v v by integrating dv dv :
du=secθtanθdθ du = \sec \theta \tan \theta \, d\theta
v=tanθ v = \tan \theta
Choosing dv=sec2θdθ dv = \sec^2 \theta \, d\theta is strategic because its integral v=tanθ v = \tan \theta is simple.

Step 3: Apply the Integration by Parts Formula

Substitute u,v,du,dv u, v, du, dv into the formula udv=uvvdu \int u \, dv = uv - \int v \, du :
sec3θdθ=(secθ)(tanθ)(tanθ)(secθtanθdθ)=secθtanθsecθtan2θdθ \begin{align*}
\int \sec^3 \theta \, d\theta &= (\sec \theta)(\tan \theta) \\ &\quad - \int (\tan \theta) (\sec \theta \tan \theta \, d\theta) \\
&= \sec \theta \tan \theta \\ &\quad - \int \sec \theta \tan^2 \theta \, d\theta
\end{align*}


Step 4: Simplify the Remaining Integral

The new integral is secθtan2θdθ \int \sec \theta \tan^2 \theta \, d\theta . We can simplify this using a trigonometric identity.
Use the identity tan2θ=sec2θ1 \tan^2 \theta = \sec^2 \theta - 1 .
Substitute this into the integral:
secθtan2θdθ=secθ(sec2θ1)dθ=(sec3θsecθ)dθ=sec3θdθsecθdθ \begin{align*}
\int \sec \theta \tan^2 \theta \, d\theta &= \int \sec \theta (\sec^2 \theta - 1) \, d\theta \\
&= \int (\sec^3 \theta - \sec \theta) \, d\theta \\
&= \int \sec^3 \theta \, d\theta - \int \sec \theta \, d\theta
\end{align*}


Step 5: Substitute Back and Solve Algebraically

Substitute the result from Step 4 back into the equation from Step 3:
sec3θdθ=secθtanθ(sec3θdθsecθdθ) \begin{align*}
\int \sec^3 \theta \, d\theta &= \sec \theta \tan \theta \\
&\quad - \left( \int \sec^3 \theta \, d\theta - \int \sec \theta \, d\theta \right)
\end{align*}

Distribute the negative sign:
sec3θdθ=secθtanθsec3θdθ+secθdθ \begin{align*}
\int \sec^3 \theta \, d\theta &= \sec \theta \tan \theta \\
&\quad - \int \sec^3 \theta \, d\theta + \int \sec \theta \, d\theta
\end{align*}

Notice that the original integral sec3θdθ \int \sec^3 \theta \, d\theta appears on both sides. Add sec3θdθ \int \sec^3 \theta \, d\theta to both sides to collect them:
2sec3θdθ=secθtanθ+secθdθ \begin{align*}
2 \int \sec^3 \theta \, d\theta &= \sec \theta \tan \theta \\
&\quad + \int \sec \theta \, d\theta
\end{align*}

Now, divide by 2 to isolate the desired integral:
sec3θdθ=12(secθtanθ+secθdθ) \begin{align*}
\int \sec^3 \theta \, d\theta &= \frac{1}{2} \left( \sec \theta \tan \theta \right. \\
&\quad \left. + \int \sec \theta \, d\theta \right)
\end{align*}

(Note: \left. \right. are used to size the parentheses correctly across lines).

Step 6: Use the Result from Part A

In Part A, we confirmed the standard result:
secθdθ=ln(secθ+tanθ)+C
\int \sec \theta \, d\theta = \ln(|\sec \theta + \tan \theta|) + C

Substitute this into our expression for sec3θdθ \int \sec^3 \theta \, d\theta . We only need one constant of integration C C at the end.
sec3θdθ=12(secθtanθ+ln(secθ+tanθ))+C=12secθtanθ+12ln(secθ+tanθ)+C \begin{align*}
\int \sec^3 \theta \, d\theta &= \frac{1}{2} \left( \sec \theta \tan \theta \right. \\
&\quad \left. + \ln(|\sec \theta + \tan \theta|) \right) + C \\
&= \frac{1}{2} \sec \theta \tan \theta \\
&\quad + \frac{1}{2} \ln(|\sec \theta + \tan \theta|) + C
\end{align*}


Step 7: Conclusion for Part B

The indefinite integral of sec3θ \sec^3 \theta is:
sec3θdθ=12secθtanθ+12ln(secθ+tanθ)+C
\boxed{ \begin{align*} \int \sec^3 \theta \, d\theta &= \frac{1}{2} \sec \theta \tan \theta \\ & \quad + \frac{1}{2} \ln(|\sec \theta + \tan \theta|) + C \end{align*} }
sec3θdθ=12secθtanθ+12ln(secθ+tanθ)+C
\boxed{ \begin{align*} \int \sec^3 \theta \, d\theta &= \frac{1}{2} \sec \theta \tan \theta \\ & \quad + \frac{1}{2} \ln(|\sec \theta + \tan \theta|) + C \end{align*} }
10. c)
Find the arc length of the curve y=x2 y = x^2 from x=0 x = 0 to x=1/2 x = 1/2 .
Integrals: Arc Length
Integrals: Trig Substitution

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Recall the Arc Length Formula

The formula for the arc length L L of a curve y=f(x) y=f(x) from x=a x=a to x=b x=b is:
L=ab1+(dydx)2dx
L = \int_{a}^{b} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx


Step 2: Find the Derivative and 1+(dy/dx)2 1 + (dy/dx)^2

The function is y=x2 y = x^2 .
The derivative is:
dydx=ddx(x2)=2x
\frac{dy}{dx} = \frac{d}{dx}(x^2) = 2x

Now, square the derivative and add 1:
1+(dydx)2=1+(2x)2=1+4x2
1 + \left(\frac{dy}{dx}\right)^2 = 1 + (2x)^2 = 1 + 4x^2


Step 3: Set Up the Arc Length Integral

Substitute 1+(dy/dx)2=1+4x2 1 + (dy/dx)^2 = 1 + 4x^2 and the limits a=0,b=1/2 a=0, b=1/2 into the formula:
L=01/21+4x2dx
L = \int_{0}^{1/2} \sqrt{1 + 4x^2} \, dx

This integral involves the square root of 1+(something)2 1 + (\text{something})^2 , which suggests a trigonometric substitution.

Step 4: Perform Trigonometric Substitution

Let 2x=tanθ 2x = \tan \theta . This implies x=12tanθ x = \frac{1}{2} \tan \theta .
Differentiate to find dx dx :
dx=12sec2θdθ
dx = \frac{1}{2} \sec^2 \theta \, d\theta

Substitute 2x=tanθ 2x = \tan \theta into the square root term and simplify:
1+4x2=1+(2x)2=1+tan2θ=sec2θ=secθ \begin{align*}
\sqrt{1 + 4x^2} &= \sqrt{1 + (2x)^2} \\
&= \sqrt{1 + \tan^2 \theta} \\
&= \sqrt{\sec^2 \theta} \\
&= |\sec \theta|
\end{align*}

Now, change the limits of integration from x x to θ \theta :
- When x=0 x = 0 : tanθ=2(0)=0 \tan \theta = 2(0) = 0 . We can choose θ=0 \theta = 0 .
- When x=1/2 x = 1/2 : tanθ=2(1/2)=1 \tan \theta = 2(1/2) = 1 . We can choose θ=π/4 \theta = \pi/4 .
For θ \theta in the interval [0,π/4] [0, \pi/4] , cosθ>0 \cos \theta > 0 , so secθ=1/cosθ>0 \sec \theta = 1/\cos\theta > 0 . Thus, secθ=secθ |\sec \theta| = \sec \theta .
Choosing the appropriate range for θ \theta (typically (π/2,π/2) (-\pi/2, \pi/2) for tangent substitution) ensures secθ \sec \theta is positive.

Substitute 1+4x2=secθ \sqrt{1+4x^2} = \sec \theta , dx=12sec2θdθ dx = \frac{1}{2}\sec^2 \theta \, d\theta , and the new limits into the integral:
L=0π/4(secθ)(12sec2θdθ)=120π/4sec3θdθ \begin{align*}
L &= \int_{0}^{\pi/4} (\sec \theta) \left( \frac{1}{2}\sec^2 \theta \, d\theta \right) \\
&= \frac{1}{2} \int_{0}^{\pi/4} \sec^3 \theta \, d\theta
\end{align*}

This shows that the arc length calculation requires the integral of sec3θ \sec^3 \theta .

Step 5: Use the Antiderivative from Part B

From Part B, we found the indefinite integral:
sec3θdθ=12secθtanθ+12ln(secθ+tanθ)+C
\int \sec^3 \theta \, d\theta = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln(|\sec \theta + \tan \theta|) + C

Now we evaluate the definite integral L=120π/4sec3θdθ L = \frac{1}{2} \int_{0}^{\pi/4} \sec^3 \theta \, d\theta . Let G(θ)=12secθtanθ+12ln(secθ+tanθ) G(\theta) = \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln(|\sec \theta + \tan \theta|) be the antiderivative part.
L=12[G(θ)]0π/4=12[12secθtanθ+12ln(secθ+tanθ)]0π/4=14[secθtanθ+ln(secθ+tanθ)]0π/4 \begin{align*}
L &= \frac{1}{2} \left[ G(\theta) \right]_{0}^{\pi/4} \\
&= \frac{1}{2} \left[ \frac{1}{2} \sec \theta \tan \theta + \frac{1}{2} \ln(|\sec \theta + \tan \theta|) \right]_{0}^{\pi/4} \\
&= \frac{1}{4} \left[ \sec \theta \tan \theta + \ln(|\sec \theta + \tan \theta|) \right]_{0}^{\pi/4}
\end{align*}


Step 6: Evaluate at the Limits

Let F(θ)=secθtanθ+ln(secθ+tanθ) F(\theta) = \sec \theta \tan \theta + \ln(|\sec \theta + \tan \theta|) . We need L=14(F(π/4)F(0)) L = \frac{1}{4} ( F(\pi/4) - F(0) ) .

Evaluate F(π/4) F(\pi/4) :
tan(π/4)=1 \tan(\pi/4) = 1
sec(π/4)=2 \sec(\pi/4) = \sqrt{2}
F(π/4)=(2)(1)+ln(2+1)=2+ln(2+1) \begin{align*}
F(\pi/4) &= (\sqrt{2})(1) + \ln(|\sqrt{2} + 1|) \\
&= \sqrt{2} + \ln(\sqrt{2} + 1)
\end{align*}

(Absolute value is dropped since 2+1>0 \sqrt{2} + 1 > 0 ).

Evaluate F(0) F(0) :
tan(0)=0 \tan(0) = 0
sec(0)=1 \sec(0) = 1
F(0)=(1)(0)+ln(1+0)=0+ln(1)=0+0=0 \begin{align*}
F(0) &= (1)(0) + \ln(|1 + 0|) \\
&= 0 + \ln(1) \\
&= 0 + 0 = 0
\end{align*}


Step 7: Calculate the Arc Length

Substitute the values back:
L=14(F(π/4)F(0))=14[(2+ln(2+1))0]=14(2+ln(2+1)) \begin{align*}
L &= \frac{1}{4} ( F(\pi/4) - F(0) ) \\
&= \frac{1}{4} [ (\sqrt{2} + \ln(\sqrt{2} + 1)) - 0 ] \\
&= \frac{1}{4} (\sqrt{2} + \ln(\sqrt{2} + 1))
\end{align*}


Step 8: Conclusion for Part C

The arc length of the curve y=x2 y = x^2 from x=0 x = 0 to x=1/2 x = 1/2 is 14(2+ln(2+1)) \frac{1}{4} (\sqrt{2} + \ln(\sqrt{2} + 1)) .
L=24+14ln(2+1)
\boxed{ L = \frac{\sqrt{2}}{4} + \frac{1}{4}\ln(\sqrt{2} + 1) }
L=24+14ln(2+1)
\boxed{ L = \frac{\sqrt{2}}{4} + \frac{1}{4}\ln(\sqrt{2} + 1) }
Question 11
(Max Marks: 6)
Determine the value c>1 c > 1 such that volume of the solid obtained by rotating the region 1xc 1 \le x \le c , 0y6x 0 \le y \le 6x about the y-axis is 16π 16\pi .
Volume: Cylindrical Shells

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Choose the Method for Volume of Revolution

The region is defined by bounds on x x (1xc 1 \le x \le c ) and y y (0y6x 0 \le y \le 6x ). We are rotating this region about the y-axis.
When rotating a region defined by y=f(x) y=f(x) about the y-axis, the Method of Cylindrical Shells is typically the most straightforward approach.

Step 2: Recall the Formula for Cylindrical Shells

The formula for the volume V V using cylindrical shells when rotating about the y-axis is:
V=ab2π(radius)(height)dx
V = \int_{a}^{b} 2\pi (\text{radius}) (\text{height}) \, dx

In our case:
- The interval of integration is [a,b]=[1,c] [a, b] = [1, c] .
- The radius of a cylindrical shell at a given x x is simply x x .
- The height of the shell at x x is given by the function bounding the region from above, which is y=6x y = 6x . So, height=h(x)=6x \text{height} = h(x) = 6x .

Step 3: Set Up the Volume Integral

Substitute the radius, height, and limits into the formula:
V=1c2π(x)(6x)dx=1c12πx2dx \begin{align*}
V &= \int_{1}^{c} 2\pi (x) (6x) \, dx \\
&= \int_{1}^{c} 12\pi x^2 \, dx
\end{align*}


Step 4: Evaluate the Definite Integral

Factor out the constant 12π 12\pi and find the antiderivative of x2 x^2 :
V=12π1cx2dx=12π[x33]1c \begin{align*}
V &= 12\pi \int_{1}^{c} x^2 \, dx \\
&= 12\pi \left[ \frac{x^3}{3} \right]_{1}^{c}
\end{align*}

Now apply the Fundamental Theorem of Calculus:
V=12π(c33133)=12π(c313)=12π3(c31)=4π(c31) \begin{align*}
V &= 12\pi \left( \frac{c^3}{3} - \frac{1^3}{3} \right) \\
&= 12\pi \left( \frac{c^3 - 1}{3} \right) \\
&= \frac{12\pi}{3} (c^3 - 1) \\
&= 4\pi (c^3 - 1)
\end{align*}

We now have an expression for the volume in terms of the unknown upper limit c c .

Step 5: Solve for c c Using the Given Volume

We are given that the volume of the solid is V=16π V = 16\pi . Set our expression for V V equal to this value:
4π(c31)=16π
4\pi (c^3 - 1) = 16\pi

Solve for c c . First, divide both sides by 4π 4\pi :
c31=16π4πc31=4 \begin{align*}
c^3 - 1 &= \frac{16\pi}{4\pi} \\
c^3 - 1 &= 4
\end{align*}

Add 1 to both sides:
c3=5
c^3 = 5

Take the cube root of both sides:
c=53
c = \sqrt[3]{5}


Step 6: Verify the Condition

The problem states that we need c>1 c > 1 .
Since 13=1 1^3 = 1 and 23=8 2^3 = 8 , we know that 53 \sqrt[3]{5} is between 1 and 2. Specifically, 531.71 \sqrt[3]{5} \approx 1.71 .
Therefore, c=53>1 c = \sqrt[3]{5} > 1 , and the condition is satisfied.
Always check if your solution for c c satisfies any constraints given in the problem statement (like c>1 c > 1 here).

Step 7: Conclusion

The value of c c such that the volume of revolution is 16π 16\pi is 53 \sqrt[3]{5} .
c=53
\boxed{ c = \sqrt[3]{5} }
c=53
\boxed{ c = \sqrt[3]{5} }
Question 12
Find the area contained in a single leaf of the polar curve r=sin(2θ) r = \sin(2\theta) .


Rose

Figure: Rose

Formula: Double and Half-Angle
Polar Coordinates

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Recall the Area Formula in Polar Coordinates

The area A A of a region bounded by the polar curve r=f(θ) r = f(\theta) from θ=α \theta = \alpha to θ=β \theta = \beta is given by the area formula in polar coordinates:
A=αβ12[f(θ)]2dθ=αβ12r2dθ
A = \int_{\alpha}^{\beta} \frac{1}{2} [f(\theta)]^2 \, d\theta = \int_{\alpha}^{\beta} \frac{1}{2} r^2 \, d\theta


Step 2: Find the Limits of Integration for One Leaf

The curve is r=sin(2θ) r = \sin(2\theta) . This is a polar rose curve. Since the coefficient of θ \theta is n=2 n=2 (even), it has 2n=4 2n = 4 leaves.
A leaf starts and ends when the radius r r is zero. We need to find consecutive values of θ \theta for which r=0 r = 0 to determine the limits of integration for one leaf.
Set r=0 r = 0 :
sin(2θ)=0 \sin(2\theta) = 0
This occurs when the angle 2θ 2\theta is an integer multiple of π \pi :
2θ=kπ,for integer k 2\theta = k\pi, \quad \text{for integer } k
Solving for θ \theta :
θ=kπ2 \theta = \frac{k\pi}{2}
Let's find consecutive values:
- If k=0 k=0 , θ=0 \theta = 0 .
- If k=1 k=1 , θ=π/2 \theta = \pi/2 .
The curve traces one full leaf as θ \theta goes from 0 0 to π/2 \pi/2 .
You can check that r=sin(2θ) r = \sin(2\theta) is positive for θ \theta between 0 0 and π/2 \pi/2 . For example, at θ=π/4 \theta=\pi/4 , r=sin(2π/4)=sin(π/2)=1 r = \sin(2\pi/4) = \sin(\pi/2) = 1 .
So, our limits of integration for one leaf are α=0 \alpha = 0 and β=π/2 \beta = \pi/2 .

Step 3: Set Up the Area Integral

Substitute r=sin(2θ) r = \sin(2\theta) , α=0 \alpha = 0 , and β=π/2 \beta = \pi/2 into the area formula:
A=0π/212[sin(2θ)]2dθ=120π/2sin2(2θ)dθ \begin{align*}
A &= \int_{0}^{\pi/2} \frac{1}{2} [\sin(2\theta)]^2 \, d\theta \\
&= \frac{1}{2} \int_{0}^{\pi/2} \sin^2(2\theta) \, d\theta
\end{align*}


Step 4: Use a Power-Reducing Identity

To integrate sin2(2θ) \sin^2(2\theta) , we use the power-reducing identity for sine.
Recall the identity: sin2(α)=1cos(2α)2 \sin^2(\alpha) = \frac{1 - \cos(2\alpha)}{2} . In our case, α=2θ \alpha = 2\theta , so 2α=4θ 2\alpha = 4\theta .
Substitute the identity into the integral:
A=120π/2(1cos(4θ)2)dθ=140π/2(1cos(4θ))dθ \begin{align*}
A &= \frac{1}{2} \int_{0}^{\pi/2} \left( \frac{1 - \cos(4\theta)}{2} \right) \, d\theta \\
&= \frac{1}{4} \int_{0}^{\pi/2} (1 - \cos(4\theta)) \, d\theta
\end{align*}


Step 5: Evaluate the Definite Integral

Find the antiderivative of 1cos(4θ) 1 - \cos(4\theta) :
The integral of 1 1 is θ \theta .
The integral of cos(4θ) -\cos(4\theta) is sin(4θ)4 -\frac{\sin(4\theta)}{4} .
So, the antiderivative is θsin(4θ)4 \theta - \frac{\sin(4\theta)}{4} .
Now evaluate the definite integral using the limits 0 0 and π/2 \pi/2 :
A=14[θsin(4θ)4]0π/2=14[(π2sin(4π/2)4)(0sin(40)4)]=14[(π2sin(2π)4)(0sin(0)4)] \begin{align*}
A &= \frac{1}{4} \left[ \theta - \frac{\sin(4\theta)}{4} \right]_{0}^{\pi/2} \\
&= \frac{1}{4} \left[ \left( \frac{\pi}{2} - \frac{\sin(4 \cdot \pi/2)}{4} \right) - \left( 0 - \frac{\sin(4 \cdot 0)}{4} \right) \right] \\
&= \frac{1}{4} \left[ \left( \frac{\pi}{2} - \frac{\sin(2\pi)}{4} \right) - \left( 0 - \frac{\sin(0)}{4} \right) \right]
\end{align*}

Since sin(2π)=0 \sin(2\pi) = 0 and sin(0)=0 \sin(0) = 0 :
A=14[(π204)(00)]=14[π20]=14(π2)=π8 \begin{align*}
A &= \frac{1}{4} \left[ \left( \frac{\pi}{2} - \frac{0}{4} \right) - (0 - 0) \right] \\
&= \frac{1}{4} \left[ \frac{\pi}{2} - 0 \right] \\
&= \frac{1}{4} \left( \frac{\pi}{2} \right) \\
&= \frac{\pi}{8}
\end{align*}


Step 6: Conclusion

The area contained in a single leaf of the polar curve r=sin(2θ) r = \sin(2\theta) is π8 \frac{\pi}{8} .
A=π8
\boxed{ A = \frac{\pi}{8} }
A=π8
\boxed{ A = \frac{\pi}{8} }