Final, Fall 2011

You have access to this exam because it is the oldest exam is always free.

McGill University, MATH 140

View Original Exam Source

Question 1

Solve limt3t293t2+11t+6. \lim_{t \to -3} \frac{t^2 - 9}{3t^2 + 11t + 6}.
limits: general
Factoring: basic

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Factor the expressions


limt3t293t2+11t+6 \lim_{t \to -3} \frac{t^2 - 9}{3t^2 + 11t + 6}

For the numerator:
t29=(t3)(t+3) t^2 - 9 = (t-3)(t+3)

For the denominator:

3t2+11t+6=3t2+9t+2t+6=3t(t+3)+2(t+3)=(3t+2)(t+3) \begin{align}
3t^2 + 11t + 6 &= 3t^2 + 9t + 2t + 6 \\
&= 3t(t+3) + 2(t+3) \\
&= (3t+2)(t+3)
\end{align}



Step 2: Cancel common factors


limt3t293t2+11t+6 \lim_{t \to -3} \frac{t^2 - 9}{3t^2 + 11t + 6}
=limt3(t3)(t+3)(3t+2)(t+3) = \lim_{t \to -3} \frac{(t-3)(t+3)}{(3t+2)(t+3)}
=limt3(t3)(t+3)(3t+2)(t+3) = \lim_{t \to -3} \frac{(t-3)\cancel{(t+3)}}{(3t+2)\cancel{(t+3)}}
=limt3t33t+2 = \lim_{t \to -3} \frac{t-3}{3t+2}

Step 3: Evaluate the limit


limt3t33t+2 \lim_{t \to -3} \frac{t-3}{3t+2}
=333(3)+2 = \frac{-3-3}{3(-3)+2}
=69+2 = \frac{-6}{-9+2}
=67 = \frac{-6}{-7}
=67 = \frac{6}{7}

Therefore:
limt3t293t2+11t+6=67\boxed{\lim_{t \to -3} \frac{t^2 - 9}{3t^2 + 11t + 6} = \frac{6}{7}}
limt3t293t2+11t+6=67\boxed{\lim_{t \to -3} \frac{t^2 - 9}{3t^2 + 11t + 6} = \frac{6}{7}}
Question 2

Evaluate the following limit:
limh0(4+h)216h \lim_{h \to 0} \frac{(-4 + h)^2 - 16}{h}
limits: general

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

I understand now. Let me correct the formatting with proper math brackets and vertical alignment:

Question

Evaluate the following limit:
limh0(4+h)216h \lim_{h \to 0} \frac{(-4 + h)^2 - 16}{h}

Step 1: Expand the numerator


(4+h)216=((4)2+2(4)(h)+h2)16=16+2(4)(h)+h216=2(4)(h)+h2=8h+h2 \begin{align}
&(-4 + h)^2 - 16\\
&= ((-4)^2 + 2(-4)(h) + h^2) - 16 \\
&= 16 + 2(-4)(h) + h^2 - 16 \\
&= 2(-4)(h) + h^2 \\
&= -8h + h^2
\end{align}



Step 2: Substitute into the original limit


limh0(4+h)216h=limh08h+h2h=limh0h(8+h)h=limh0(8+h) \begin{align}
& \lim_{h \to 0} \frac{(-4 + h)^2 - 16}{h} \\
&= \lim_{h \to 0} \frac{-8h + h^2}{h} \\
&= \lim_{h \to 0} \frac{h(-8 + h)}{h} \\
&= \lim_{h \to 0} (-8 + h)
\end{align}



Step 3: Evaluate the limit

limh0(8+h)=8+0=8 \begin{align}
\lim_{h \to 0} (-8 + h) &= -8 + 0 \\
&= -8
\end{align}


Therefore:
limh0(4+h)216h=8\boxed{\lim_{h \to 0} \frac{(-4 + h)^2 - 16}{h} = -8}
limh0(4+h)216h=8\boxed{\lim_{h \to 0} \frac{(-4 + h)^2 - 16}{h} = -8}
Question 3
Max Marks: 3

Find limx3ex+5sin(x)ex+cos(x) \lim_{x \to \infty} \frac{3e^x + 5\sin(x)}{e^x + \cos(x)}
limits: general
Exponentials
Intuitive Reasoning

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Divide both numerator and denominator by exe^x



limx3ex+5sin(x)ex+cos(x)=limx3ex+5sin(x)ex+cos(x)1/ex1/ex=limx3+5sin(x)/ex1+cos(x)/ex \begin{align}
& \lim_{x \to \infty} \frac{3e^x + 5\sin(x)}{e^x + \cos(x)} \\
&= \lim_{x \to \infty} \frac{3e^x + 5\sin(x)}{e^x + \cos(x)} \cdot \frac{1/e^x}{1/e^x} \\
&= \lim_{x \to \infty} \frac{3 + 5\sin(x)/e^x}{1 + \cos(x)/e^x}
\end{align}



Step 2: Evaluate limits of individual terms as xx \to \infty


As xx \to \infty:
- sin(x)/ex0\sin(x)/e^x \to 0 since exe^x grows much faster than sin(x)\sin(x)
- cos(x)/ex0\cos(x)/e^x \to 0 for the same reason

When dealing with limits involving exponentials and trigonometric functions, remember that exponential functions like exe^x grow much faster than any polynomial or trigonometric function. Since sine and cosine are always bounded between -1 and 1, the ratio sin(x)/ex\sin(x)/e^x or cos(x)/ex\cos(x)/e^x will always approach 0 as xx approaches infinity.

Step 3: Substitute these limits



limx3+5sin(x)/ex1+cos(x)/ex=limx(3+5sin(x)/ex)limx(1+cos(x)/ex)=3+01+0=3 \begin{align}
&\lim_{x \to \infty} \frac{3 + 5\sin(x)/e^x}{1 + \cos(x)/e^x}\\
&= \frac{\lim_{x \to \infty}(3 + 5\sin(x)/e^x)}{\lim_{x \to \infty}(1 + \cos(x)/e^x)} \\
&= \frac{3 + 0}{1 + 0} \\
&= 3
\end{align}



Therefore:
limx3ex+5sin(x)ex+cos(x)=3\boxed{\lim_{x \to \infty} \frac{3e^x + 5\sin(x)}{e^x + \cos(x)} = 3}
limx3ex+5sin(x)ex+cos(x)=3\boxed{\lim_{x \to \infty} \frac{3e^x + 5\sin(x)}{e^x + \cos(x)} = 3}
Question 4
Max Marks: 3

The vertical asymptote(s) of f(x)=3x6+7x35x2+6xf(x) = \frac{\sqrt{3x^6 + 7}}{x^3 - 5x^2 + 6x} is (are) best described by:

(a) x=0x = 0, (b) x=2x = 2, (c) x=3x = 3, (d) two asymptotes, (e) three asymptotes.
Intuitive Reasoning
graphing
Curve Sketching
Vertical Asymptotes
asymptotes

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

The vertical asymptote(s) of f(x)=3x6+7x35x2+6xf(x) = \frac{\sqrt{3x^6 + 7}}{x^3 - 5x^2 + 6x} is (are) best described by:

(a) x=0x = 0, (b) x=2x = 2, (c) x=3x = 3, (d) two asymptotes, (e) three asymptotes.

Step 1: Find where the denominator equals zero


Vertical asymptotes occur at values where the denominator equals zero.

x35x2+6x=0x(x25x+6)=0x(x2)(x3)=0 \begin{align}
x^3 - 5x^2 + 6x &= 0 \\
x(x^2 - 5x + 6) &= 0 \\
x(x - 2)(x - 3) &= 0
\end{align}


This gives us x=0x = 0, x=2x = 2, or x=3x = 3 as potential vertical asymptotes.

Step 2: Confirm these are asymptotes


For these points to be vertical asymptotes, we need to verify that the numerator is non-zero at these points.

The numerator is 3x6+7\sqrt{3x^6 + 7}. Since 3x63x^6 is always non-negative (as it's raised to an even power) and we're adding the positive constant 7, the expression under the square root is always positive. Therefore, the numerator is always positive and never zero.

Since the numerator is never zero at any of these points, all three values x=0x = 0, x=2x = 2, and x=3x = 3 are vertical asymptotes.

Step 3: Determine the answer


Since we've confirmed that the function has vertical asymptotes at x=0x = 0, x=2x = 2, and x=3x = 3, there are three vertical asymptotes in total.

Therefore:
The answer is (e) three asymptotes\boxed{\text{The answer is (e) three asymptotes}}

When analyzing rational functions with radicals, remember that expressions like x2n+kx^{2n} + k (where k > 0) are always positive, ensuring that vertical asymptotes occur at all zeros of the denominator.
The answer is (e) three asymptotes\boxed{\text{The answer is (e) three asymptotes}}
Question 5
Max Marks: 3

Let f(x)=3x235x34f(x) = 3x^{\frac{2}{3}} - 5x^{-\frac{3}{4}}. Find f(1)f'(1).
taking derivatives

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Let f(x)=3x235x34f(x) = 3x^{\frac{2}{3}} - 5x^{-\frac{3}{4}}. Find f(1)f'(1).

Step 1: Find the derivative of f(x)f(x)


We need to use the power rule for differentiation: ddx(xn)=nxn1\frac{d}{dx}(x^n) = nx^{n-1}

For the first term: 3x233x^{\frac{2}{3}}
ddx(3x23)=323x231=2x13=2x13 \begin{align}
\frac{d}{dx}(3x^{\frac{2}{3}}) &= 3 \cdot \frac{2}{3} \cdot x^{\frac{2}{3}-1} \\
&= 2 \cdot x^{-\frac{1}{3}} \\
&= \frac{2}{x^{\frac{1}{3}}}
\end{align}


For the second term: 5x34-5x^{-\frac{3}{4}}
ddx(5x34)=5(34)x341=5(34)x74=154x74=154x74 \begin{align}
\frac{d}{dx}(-5x^{-\frac{3}{4}}) &= -5 \cdot (-\frac{3}{4}) \cdot x^{-\frac{3}{4}-1} \\
&= -5 \cdot (-\frac{3}{4}) \cdot x^{-\frac{7}{4}} \\
&= \frac{15}{4} \cdot x^{-\frac{7}{4}} \\
&= \frac{15}{4 \cdot x^{\frac{7}{4}}}
\end{align}


Now we combine these results to find f(x)f'(x):
f(x)=2x13+154x74 \begin{align}
f'(x) &= \frac{2}{x^{\frac{1}{3}}} + \frac{15}{4 \cdot x^{\frac{7}{4}}}
\end{align}


Step 2: Evaluate f(1)f'(1)


When we substitute x=1x = 1:
f(1)=2113+154174=21+1541=2+154=2+154=84+154=234 \begin{align}
f'(1) &= \frac{2}{1^{\frac{1}{3}}} + \frac{15}{4 \cdot 1^{\frac{7}{4}}} \\
&= \frac{2}{1} + \frac{15}{4 \cdot 1} \\
&= 2 + \frac{15}{4} \\
&= 2 + \frac{15}{4} \\
&= \frac{8}{4} + \frac{15}{4} \\
&= \frac{23}{4}
\end{align}


Therefore:
f(1)=234\boxed{f'(1) = \frac{23}{4}}
f(1)=234\boxed{f'(1) = \frac{23}{4}}
Question 6

Find dydx\frac{dy}{dx} if tanh(x)=xy\tanh(x) = xy at the point (1,tanh(1))(1, \tanh(1)).
differentiation: implicit
hyperbolic trig functions
Differentiation: general

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Use implicit differentiation


We need to differentiate both sides of the equation with respect to xx:
tanh(x)=xy \begin{align}
\tanh(x) &= xy
\end{align}


Differentiating the left side:
ddx[tanh(x)]=sech2(x) \begin{align}
\frac{d}{dx}[\tanh(x)] &= \text{sech}^2(x)
\end{align}


Differentiating the right side:
ddx[xy]=y+xdydx \begin{align}
\frac{d}{dx}[xy] &= y + x\frac{dy}{dx}
\end{align}


Step 2: Set the derivatives equal and solve for dydx\frac{dy}{dx}


sech2(x)=y+xdydxsech2(x)y=xdydxdydx=sech2(x)yx \begin{align}
\text{sech}^2(x) &= y + x\frac{dy}{dx} \\
\text{sech}^2(x) - y &= x\frac{dy}{dx} \\
\frac{dy}{dx} &= \frac{\text{sech}^2(x) - y}{x}
\end{align}


Step 3: Evaluate at the given point


At the point (1,tanh(1))(1, \tanh(1)), we have x=1x = 1 and y=tanh(1)y = \tanh(1).

Let's substitute these values:
dydx(1,tanh(1))=sech2(1)tanh(1)1=sech2(1)tanh(1) \begin{align}
\frac{dy}{dx}\bigg|_{(1,\tanh(1))} &= \frac{\text{sech}^2(1) - \tanh(1)}{1} \\
&= \text{sech}^2(1) - \tanh(1)
\end{align}


Now we need to calculate these values:
sech2(1)=1cosh2(1)=1(e+e12)2=4(e+e1)2 \begin{align}
\text{sech}^2(1) &= \frac{1}{\cosh^2(1)} \\
&= \frac{1}{(\frac{e + e^{-1}}{2})^2} \\
&= \frac{4}{(e + e^{-1})^2}
\end{align}


And:
tanh(1)=sinh(1)cosh(1)=ee12e+e12=ee1e+e1 \begin{align}
\tanh(1) &= \frac{\sinh(1)}{\cosh(1)} \\
&= \frac{\frac{e - e^{-1}}{2}}{\frac{e + e^{-1}}{2}} \\
&= \frac{e - e^{-1}}{e + e^{-1}}
\end{align}


Therefore:

dydx=4(e+e1)2ee1e+e1=4(e+e1)2(ee1)(e+e1)(e+e1)2=4(e2e2)(e+e1)2=4(e2e2)(e+e1)2 \begin{align}
\frac{dy}{dx} &= \frac{4}{(e + e^{-1})^2} - \frac{e - e^{-1}}{e + e^{-1}} \\
&= \frac{4}{(e + e^{-1})^2} - \frac{(e - e^{-1})(e + e^{-1})}{(e + e^{-1})^2} \\
&= \frac{4 - (e^2 - e^{-2})}{(e + e^{-1})^2} \\
&= \frac{4 - (e^2 - e^{-2})}{(e + e^{-1})^2}
\end{align}



We can simplify further:
dydx=4e2+e2(e+e1)2 \begin{align}
\frac{dy}{dx} &= \frac{4 - e^2 + e^{-2}}{(e + e^{-1})^2}
\end{align}


Therefore:
dydx=4e2+e2(e+e1)2\boxed{\frac{dy}{dx} = \frac{4 - e^2 + e^{-2}}{(e + e^{-1})^2}}

When differentiating hyperbolic functions, remember that ddx[tanh(x)]=sech2(x)=1cosh2(x)\frac{d}{dx}[\tanh(x)] = \text{sech}^2(x) = \frac{1}{\cosh^2(x)}, similar to how the derivative of tan(x)\tan(x) is sec2(x)\sec^2(x) for trigonometric functions.
dydx=4e2+e2(e+e1)2\boxed{\frac{dy}{dx} = \frac{4 - e^2 + e^{-2}}{(e + e^{-1})^2}}
Question 7

Let the function be defined by
f(x)={sinh(x)if x<0,b3cos(x)if x0. f(x) =
\begin{cases}
\sinh(x) & \text{if } x < 0, \\
b - 3\cos(x) & \text{if } x \geq 0.
\end{cases}

Find the value of bb that makes f(x)f(x) continuous everywhere.
hyperbolic trig functions
Piecewise functions
continuity

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Understand what continuity means


For a piecewise function to be continuous at the transition point (in this case x=0x = 0), the limits from both sides must be equal:

limx0f(x)=limx0+f(x) \begin{align}
& \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x)
\end{align}


Step 2: Calculate the left-hand limit


The left-hand limit uses the first piece of the function:

limx0f(x)=limx0sinh(x)=sinh(0)=0 \begin{align}
& \lim_{x \to 0^-} f(x) \\
&= \lim_{x \to 0^-} \sinh(x) \\
&= \sinh(0) \\
&= 0
\end{align}


Step 3: Calculate the right-hand limit


The right-hand limit uses the second piece:

limx0+f(x)=limx0+(b3cos(x))=b3cos(0)=b3(1)=b3 \begin{align}
& \lim_{x \to 0^+} f(x) \\
&= \lim_{x \to 0^+} (b - 3\cos(x)) \\
&= b - 3\cos(0) \\
&= b - 3(1) \\
&= b - 3
\end{align}


Step 4: Set the limits equal


For continuity, these limits must be equal:

limx0f(x)=limx0+f(x) \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x)
sinh(0)=b3cos(0) \sinh(0) = b - 3\cos(0)
0=b3(1) 0 = b - 3(1)
0=b3 0 = b - 3
b=3 b = 3

When working with piecewise functions, always check the value of each piece at the transition point to ensure continuity.

Therefore, the value of bb that makes f(x)f(x) continuous everywhere is:

b=3 \boxed{b = 3}
b=3 \boxed{b = 3}
Question 8

Let f(x)=x3e2x+3(x2)2exf(x) = x^3e^{2x} + 3(x - 2)^2e^{-x}. Find f(0)f'(0).
taking derivatives
Exponentials

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Break down the function


We have a function with two terms:
1. x3e2xx^3e^{2x}
2. 3(x2)2ex3(x - 2)^2e^{-x}

We'll need to find the derivative of each term using the product rule, then evaluate at x=0x = 0.

Step 2: Apply the product rule to the first term


For the first term, x3e2xx^3e^{2x}, we use the product rule:

ddx[x3e2x]=ddx[x3]e2x+x3ddx[e2x]=3x2e2x+x32e2x=3x2e2x+2x3e2x=e2x(3x2+2x3) \begin{align}
& \frac{d}{dx}[x^3e^{2x}] \\
&= \frac{d}{dx}[x^3] \cdot e^{2x} + x^3 \cdot \frac{d}{dx}[e^{2x}] \\
&= 3x^2 \cdot e^{2x} + x^3 \cdot 2e^{2x} \\
&= 3x^2e^{2x} + 2x^3e^{2x} \\
&= e^{2x}(3x^2 + 2x^3)
\end{align}


Step 3: Apply the product rule to the second term


For the second term, 3(x2)2ex3(x - 2)^2e^{-x}, we use the product rule again:


ddx[3(x2)2ex]=ddx[3(x2)2]ex+3(x2)2ddx[ex]=32(x2)ex+3(x2)2(1)ex=6(x2)ex3(x2)2ex=ex[6(x2)3(x2)2] \begin{align}
& \frac{d}{dx}[3(x - 2)^2e^{-x}] \\
&= \frac{d}{dx}[3(x - 2)^2] \cdot e^{-x} + 3(x - 2)^2 \cdot \frac{d}{dx}[e^{-x}] \\
&= 3 \cdot 2(x - 2) \cdot e^{-x} + 3(x - 2)^2 \cdot (-1)e^{-x} \\
&= 6(x - 2)e^{-x} - 3(x - 2)^2e^{-x} \\
&= e^{-x}[6(x - 2) - 3(x - 2)^2]
\end{align}



When differentiating terms with eaxe^{ax}, remember that ddx[eax]=aeax\frac{d}{dx}[e^{ax}] = a \cdot e^{ax}. The coefficient comes out front!

Step 4: Combine the derivatives and evaluate at x = 0


The complete derivative is:


f(x)=e2x(3x2+2x3)+ex[6(x2)3(x2)2] \begin{align}
& f'(x) \\
&= e^{2x}(3x^2 + 2x^3) \\
&+ e^{-x}[6(x - 2) - 3(x - 2)^2]
\end{align}


Now we evaluate at x=0x = 0:

f(0)=e2(0)(3(0)2+2(0)3)+e(0)[6(02)3(02)2]=e0(0)+e0[6(2)3(2)2]=10+1[(12)34]=0+[1212]=24 \begin{align}
& f'(0) \\
&= e^{2(0)}(3(0)^2 + 2(0)^3) \\
&+ e^{-(0)}[6(0 - 2) - 3(0 - 2)^2] \\
&= e^0(0) \\
&+ e^0[6(-2) - 3(-2)^2] \\
&= 1 \cdot 0 \\
&+ 1 \cdot [(-12) - 3 \cdot 4] \\
&= 0 \\
&+ [-12 - 12] \\
&= -24
\end{align}

Therefore:

f(0)=24 \boxed{f'(0) = -24}
f(0)=24 \boxed{f'(0) = -24}
Question 9

Let f(x)=tan(x)x22x+5f(x) = \frac{\tan(x)}{x^2 - 2x + 5}. Find f(0)f'(0).
taking derivatives
differentiation: quotient rule

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Let f(x)=tan(x)x22x+5f(x) = \frac{\tan(x)}{x^2 - 2x + 5}. Find f(0)f'(0).

Step 1: Identify the quotient rule


Since we have a fraction, we'll use the quotient rule.

If f(x)=g(x)h(x)f(x) = \frac{g(x)}{h(x)}, then:

f(x)=g(x)h(x)g(x)h(x)[h(x)]2 \begin{align}
f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{[h(x)]^2}
\end{align}


Step 2: Identify the numerator and denominator


Let's set:
- g(x)=tan(x)g(x) = \tan(x)
- h(x)=x22x+5h(x) = x^2 - 2x + 5

Step 3: Find the derivatives


g(x)=ddx[tan(x)]=sec2(x) \begin{align}
& g'(x) = \frac{d}{dx}[\tan(x)] \\
&= \sec^2(x)
\end{align}


h(x)=ddx[x22x+5]=2x2 \begin{align}
& h'(x) = \frac{d}{dx}[x^2 - 2x + 5] \\
&= 2x - 2
\end{align}


Step 4: Apply the quotient rule


f(x)=g(x)h(x)g(x)h(x)[h(x)]2=sec2(x)(x22x+5)tan(x)(2x2)(x22x+5)2 \begin{align}
& f'(x) \\
&= \frac{g'(x)h(x) - g(x)h'(x)}{[h(x)]^2} \\
&= \frac{\sec^2(x)(x^2 - 2x + 5) - \tan(x)(2x - 2)}{(x^2 - 2x + 5)^2}
\end{align}



When evaluating at x = 0, remember that tan(0)=0\tan(0) = 0 and sec2(0)=1\sec^2(0) = 1, which simplifies our work considerably!

Step 5: Evaluate at x = 0


At x=0x = 0:


f(0)=sec2(0)(022(0)+5)tan(0)(2(0)2)(022(0)+5)2=150(2)52=525=15 \begin{align}
& f'(0) \\
&= \frac{\sec^2(0)(0^2 - 2(0) + 5) - \tan(0)(2(0) - 2)}{(0^2 - 2(0) + 5)^2} \\
&= \frac{1 \cdot 5 - 0 \cdot (-2)}{5^2} \\
&= \frac{5}{25} \\
&= \frac{1}{5}
\end{align}



Therefore:

f(0)=15 \boxed{f'(0) = \frac{1}{5}}
f(0)=15 \boxed{f'(0) = \frac{1}{5}}
Question 10

Does the tangent to the curve y=(x1)2x+2y = \frac{(x - 1)^2}{x + 2} at (2,1)(2, 1) passes through the point (x,y)=(0,18)(x, y) = (0, \frac{1}{8})?
equation of tangent
differentiation: quotient rule
quotient rule

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Find the derivative of the function


Let u(x)=(x1)2u(x) = (x - 1)^2 and v(x)=x+2v(x) = x + 2

dydx=u(x)v(x)u(x)v(x)[v(x)]2 \begin{align}
& \frac{dy}{dx} \\
&= \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2}
\end{align}


Finding the derivatives:

u(x)=ddx[(x1)2]=2(x1) \begin{align}
& u'(x) \\
&= \frac{d}{dx}[(x - 1)^2] \\
&= 2(x - 1)
\end{align}


v(x)=ddx[x+2]=1 \begin{align}
& v'(x) \\
&= \frac{d}{dx}[x + 2] \\
&= 1
\end{align}


Substituting into the quotient rule:

dydx=2(x1)(x+2)(x1)21(x+2)2 \begin{align}
& \frac{dy}{dx} \\
&= \frac{2(x - 1)(x + 2) - (x - 1)^2 \cdot 1}{(x + 2)^2}
\end{align}


Step 2: Evaluate the derivative at the point (2, 1)


At x=2x = 2:

dydxx=2=2(21)(2+2)(21)2(2+2)2=2(1)(4)(1)242=8116=716 \begin{align}
& \frac{dy}{dx}\bigg|_{x=2} \\
&= \frac{2(2 - 1)(2 + 2) - (2 - 1)^2}{(2 + 2)^2} \\
&= \frac{2(1)(4) - (1)^2}{4^2} \\
&= \frac{8 - 1}{16} \\
&= \frac{7}{16}
\end{align}


Step 3: Find the equation of the tangent line


The slope of the tangent line at (2,1)(2, 1) is m=716m = \frac{7}{16}

Using the point-slope form of a line:

yy1=m(xx1)y1=716(x2)y1=716x78y=716x78+1y=716x78+88y=716x+18 \begin{align}
& y - y_1 = m(x - x_1) \\
&y - 1 = \frac{7}{16}(x - 2) \\
&y - 1 = \frac{7}{16}x - \frac{7}{8} \\
&y = \frac{7}{16}x - \frac{7}{8} + 1 \\
&y = \frac{7}{16}x - \frac{7}{8} + \frac{8}{8} \\
&y = \frac{7}{16}x + \frac{1}{8}
\end{align}


Step 4: Find a point on the tangent line


Let's find a point with a simple x-value, say x=0x = 0:

y=7160+18y=0+18y=18 \begin{align}
& y = \frac{7}{16} \cdot 0 + \frac{1}{8} \\
&y = 0 + \frac{1}{8} \\
&y = \frac{1}{8}
\end{align}


Therefore, the point (0,18)(0, \frac{1}{8}) lies on the tangent line.

(x,y)=(0,18) \boxed{(x,y) = \left(0, \frac{1}{8}\right)}
Therefore, the point (0,18)(0, \frac{1}{8}) lies on the tangent line.

(x,y)=(0,18) \boxed{(x,y) = \left(0, \frac{1}{8}\right)}
Question 11

The maximum value attained by the function (x1)2x+2\frac{(x - 1)^2}{x + 2} on the interval [8,4][-8, -4] is ___.
Extreme Value Theorem
critical points
find critical numbers
maximizing and minimizing

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Find the critical points


We already found the derivative of this function in our previous question:

dydx=2(x1)(x+2)(x1)2(x+2)2 \begin{align}
& \frac{dy}{dx} \\
&= \frac{2(x - 1)(x + 2) - (x - 1)^2}{(x + 2)^2}
\end{align}


To find critical points, we set this equal to zero:

2(x1)(x+2)(x1)2(x+2)2=0 \begin{align}
& \frac{2(x - 1)(x + 2) - (x - 1)^2}{(x + 2)^2} = 0
\end{align}


Since the denominator cannot be zero on our interval (as x+2>0x + 2 > 0 when x1.9x \geq -1.9), we only need:

2(x1)(x+2)(x1)2=0(x1)[2(x+2)(x1)]=0(x1)[2x+4x+1]=0(x1)[x+5]=0 \begin{align}
& 2(x - 1)(x + 2) - (x - 1)^2 = 0 \\
&(x - 1)[2(x + 2) - (x - 1)] = 0 \\
&(x - 1)[2x + 4 - x + 1] = 0 \\
&(x - 1)[x + 5] = 0
\end{align}


So x=1x = 1 or x=5x = -5 are our critical points.

Step 2: Check the interval endpoints


Our interval is [8,4][-8, -4], and we found one critical point at x=5x = -5 which is within this interval.

Extreme Value Theorem tells us that the maximum must occur either at a critical point within the interval or at an endpoint.

We need to evaluate the function at x=8x = -8, x=5x = -5, and x=4x = -4.

Step 3: Evaluate at x = -8


f(8)=(81)28+2=(9)26=816=13.5 \begin{align}
& f(-8) \\
&= \frac{(-8 - 1)^2}{-8 + 2} \\
&= \frac{(-9)^2}{-6} \\
&= \frac{81}{-6} \\
&= -13.5
\end{align}


Step 4: Evaluate at x = -5


f(5)=(51)25+2=(6)23=363=12 \begin{align}
& f(-5) \\
&= \frac{(-5 - 1)^2}{-5 + 2} \\
&= \frac{(-6)^2}{-3} \\
&= \frac{36}{-3} \\
&= -12
\end{align}


Step 5: Evaluate at x = -4


f(4)=(41)24+2=(5)22=252=12.5 \begin{align}
& f(-4) \\
&= \frac{(-4 - 1)^2}{-4 + 2} \\
&= \frac{(-5)^2}{-2} \\
&= \frac{25}{-2} \\
&= -12.5
\end{align}


When finding extreme values on a closed interval, always check both the critical points inside the interval AND the endpoint values!

Step 6: Compare all values


Comparing all three values:
- f(8)=13.5f(-8) = -13.5
- f(5)=12f(-5) = -12
- f(4)=12.5f(-4) = -12.5

The maximum value is 12-12 which occurs at x=5x = -5.

Maximum value=12 \boxed{\text{Maximum value} = -12}
Maximum value=12 \boxed{\text{Maximum value} = -12}
Question 12

The maximum value attained by the function (x1)2x+2\frac{(x - 1)^2}{x + 2} on the interval [0,5][0, 5] is ___.

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Recall the derivative we found earlier


We already found that:

f(x)=2(x1)(x+2)(x1)2(x+2)2=(x1)[2(x+2)(x1)](x+2)2=(x1)[2x+4x+1](x+2)2=(x1)(x+5)(x+2)2 \begin{align}
& f'(x) \\
&= \frac{2(x - 1)(x + 2) - (x - 1)^2}{(x + 2)^2} \\
&= \frac{(x - 1)[2(x + 2) - (x - 1)]}{(x + 2)^2} \\
&= \frac{(x - 1)[2x + 4 - x + 1]}{(x + 2)^2} \\
&= \frac{(x - 1)(x + 5)}{(x + 2)^2}
\end{align}


Step 2: Find critical points


Setting the derivative equal to zero:

(x1)(x+5)(x+2)2=0 \begin{align}
& \frac{(x - 1)(x + 5)}{(x + 2)^2} = 0
\end{align}


Since the denominator is never zero on our interval, we have:
(x1)(x+5)=0(x - 1)(x + 5) = 0

This gives us x=1x = 1 or x=5x = -5. Since 5-5 is outside our interval [0,5][0,5], we only consider x=1x = 1.

Step 3: Evaluate at endpoints and critical points


We need to check the function value at x=0x = 0, x=1x = 1, and x=5x = 5.

At x=0x = 0:

f(0)=(01)20+2=12=0.5 \begin{align}
& f(0) \\
&= \frac{(0 - 1)^2}{0 + 2} \\
&= \frac{1}{2} \\
&= 0.5
\end{align}


At x=1x = 1:

f(1)=(11)21+2=03=0 \begin{align}
& f(1) \\
&= \frac{(1 - 1)^2}{1 + 2} \\
&= \frac{0}{3} \\
&= 0
\end{align}


At x=5x = 5:

f(5)=(51)25+2=1672.29 \begin{align}
& f(5) \\
&= \frac{(5 - 1)^2}{5 + 2} \\
&= \frac{16}{7} \\
&\approx 2.29
\end{align}


Step 4: Determine the maximum value


Comparing all three values:
- f(0)=12=0.5f(0) = \frac{1}{2} = 0.5
- f(1)=0f(1) = 0
- f(5)=1672.29f(5) = \frac{16}{7} \approx 2.29

The maximum value is 167\frac{16}{7} which occurs at x=5x = 5.

Maximum value=167 \boxed{\text{Maximum value} = \frac{16}{7}}

For rational functions, the behavior may be very different on different intervals. Always check all critical points within the interval AND both endpoints!
Maximum value=167 \boxed{\text{Maximum value} = \frac{16}{7}}
Question 13

Let f(x)=3sin(x)cos(3x)f(x) = 3\sin(x) - \cos(3x). Then f(π4)f''(\frac{\pi}{4}) is ___.
taking derivatives
unit circle values

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Find the first derivative


We need to find f(x)f'(x) by taking the derivative of each term:

f(x)=3sin(x)cos(3x)f(x)=3cos(x)(sin(3x)3)f(x)=3cos(x)+3sin(3x) \begin{align}
& f(x) = 3\sin(x) - \cos(3x) \\
& f'(x) = 3\cos(x) - (-\sin(3x) \cdot 3) \\
& f'(x) = 3\cos(x) + 3\sin(3x)
\end{align}


Step 2: Find the second derivative


Now we take the derivative of f(x)f'(x) to find f(x)f''(x):


f(x)=3cos(x)+3sin(3x)f(x)=3(sin(x))+3(cos(3x)3)f(x)=3sin(x)+9cos(3x) \begin{align}
& f'(x) = 3\cos(x) + 3\sin(3x) \\
& f''(x) = 3(-\sin(x)) + 3(\cos(3x) \cdot 3) \\
& f''(x) = -3\sin(x) + 9\cos(3x)
\end{align}





When taking derivatives of trigonometric functions with coefficients in the argument, remember the chain rule: ddx[sin(ax)]=acos(ax)\frac{d}{dx}[\sin(ax)] = a\cos(ax) and ddx[cos(ax)]=asin(ax)\frac{d}{dx}[\cos(ax)] = -a\sin(ax).

Step 3: Evaluate at x = π/4


Now we substitute x=π4x = \frac{\pi}{4} into our expression for f(x)f''(x):

f(π4)=3sin(π4)+9cos(3π4)=322+9cos(3π4) \begin{align}
& f''(\frac{\pi}{4}) \\
&= -3\sin(\frac{\pi}{4}) + 9\cos(3 \cdot \frac{\pi}{4}) \\
&= -3 \cdot \frac{\sqrt{2}}{2} + 9\cos(\frac{3\pi}{4})
\end{align}


We know that:
- sin(π4)=22\sin(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}
- cos(3π4)=22\cos(\frac{3\pi}{4}) = -\frac{\sqrt{2}}{2}

Therefore:

f(π4)=322+9(22)=322922=1222=62 \begin{align}
& f''(\frac{\pi}{4}) \\
&= -3 \cdot \frac{\sqrt{2}}{2} + 9 \cdot (-\frac{\sqrt{2}}{2}) \\
&= -\frac{3\sqrt{2}}{2} - \frac{9\sqrt{2}}{2} \\
&= -\frac{12\sqrt{2}}{2} \\
&= -6\sqrt{2}
\end{align}


Therefore:

f(π4)=62 \boxed{f''(\frac{\pi}{4}) = -6\sqrt{2}}
f(π4)=62 \boxed{f''(\frac{\pi}{4}) = -6\sqrt{2}}
Question 14

Let f(x)=x43(9x)f(x) = |x|^{\frac{4}{3}}(9 - x). Find the set on which the function is increasing.
Absolute Value
critical points
Intervals of Increase and Decrease

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Let me revise the solution to explicitly find the critical points and exclude them from the interval:

Let f(x)=x43(9x)f(x) = |x|^{\frac{4}{3}}(9 - x). Find the set on which the function is increasing.

Step 1: Find the derivative for x > 0


When x>0x > 0, x=x|x| = x, so:
f(x)=x43(9x)f(x)=43x13(9x)x43f(x)=x13[43(9x)x]f(x)=x13[1273x] \begin{align}
& f(x) = x^{\frac{4}{3}}(9 - x) \\
& f'(x) = \frac{4}{3}x^{\frac{1}{3}}(9 - x) - x^{\frac{4}{3}} \\
& f'(x) = x^{\frac{1}{3}}[\frac{4}{3}(9 - x) - x] \\
& f'(x) = x^{\frac{1}{3}}[12 - \frac{7}{3}x]
\end{align}


Step 2: Find the derivative for x < 0


When x<0x < 0, x=x|x| = -x, so:
f(x)=(x)43(9x)f(x)=(x)13[12+13x] \begin{align}
& f(x) = (-x)^{\frac{4}{3}}(9 - x) \\
& f'(x) = (-x)^{\frac{1}{3}}[-12 + \frac{1}{3}x]
\end{align}


Step 3: Find the critical points


Critical points occur when f(x)=0f'(x) = 0 or when f(x)f'(x) is undefined.

For x>0x > 0:
f(x)=x13[1273x]=0 \begin{align}
& f'(x) = x^{\frac{1}{3}}[12 - \frac{7}{3}x] = 0
\end{align}


This occurs when:
- x13=0x^{\frac{1}{3}} = 0, which is impossible for x>0x > 0
- 1273x=012 - \frac{7}{3}x = 0, which gives x=367x = \frac{36}{7}

For x<0x < 0:
f(x)=(x)13[12+13x]=0 \begin{align}
& f'(x) = (-x)^{\frac{1}{3}}[-12 + \frac{1}{3}x] = 0
\end{align}


This occurs when:
- (x)13=0(-x)^{\frac{1}{3}} = 0, which is impossible for x<0x < 0
- 12+13x=0-12 + \frac{1}{3}x = 0, which gives x=36x = 36, but this is outside our domain of x<0x < 0

For x=0x = 0:
Both formulations of the derivative approach 0 as xx approaches 0, so x=0x = 0 is also a critical point.

Therefore, our critical points are x=0x = 0 and x=367x = \frac{36}{7}.

Step 4: Determine where f'(x) > 0


For x<0x < 0:
f(x)=(x)13[12+13x] f'(x) = (-x)^{\frac{1}{3}}[-12 + \frac{1}{3}x]

Since (x)13>0(-x)^{\frac{1}{3}} > 0 for x<0x < 0, and [12+13x]<0[-12 + \frac{1}{3}x] < 0 for x<0x < 0 (because 13x<0\frac{1}{3}x < 0 and 12<0-12 < 0), we have f(x)<0f'(x) < 0 for all x<0x < 0.

For 0<x<3670 < x < \frac{36}{7}:
f(x)=x13[1273x] f'(x) = x^{\frac{1}{3}}[12 - \frac{7}{3}x]

Since x13>0x^{\frac{1}{3}} > 0 for x>0x > 0, and [1273x]>0[12 - \frac{7}{3}x] > 0 for x<367x < \frac{36}{7}, we have f(x)>0f'(x) > 0 for 0<x<3670 < x < \frac{36}{7}.

For x>367x > \frac{36}{7}:
f(x)=x13[1273x] f'(x) = x^{\frac{1}{3}}[12 - \frac{7}{3}x]

Since x13>0x^{\frac{1}{3}} > 0 for x>0x > 0, and [1273x]<0[12 - \frac{7}{3}x] < 0 for x>367x > \frac{36}{7}, we have f(x)<0f'(x) < 0 for x>367x > \frac{36}{7}.

Step 5: Identify the interval where f is increasing


Based on our analysis:
- For x<0x < 0: f(x)<0f'(x) < 0 (function is decreasing)
- For 0<x<3670 < x < \frac{36}{7}: f(x)>0f'(x) > 0 (function is increasing)
- For x>367x > \frac{36}{7}: f(x)<0f'(x) < 0 (function is decreasing)
- At x=0x = 0 and x=367x = \frac{36}{7}: f(x)=0f'(x) = 0 (function is neither increasing nor decreasing)

Since we're looking for where the function is strictly increasing (not just non-decreasing), we exclude the critical points.

Therefore, the set on which f(x)=x43(9x)f(x) = |x|^{\frac{4}{3}}(9 - x) is increasing is:

(0,367) \boxed{(0, \frac{36}{7})}

When finding intervals of increase/decrease, exclude critical points where the derivative equals zero, as the function is not strictly increasing or decreasing at those points.
(0,367) \boxed{(0, \frac{36}{7})}
Question 15

Let g(x)=3x32x26x+5g(x) = 3x^3 - 2x^2 - 6x + 5. The Intermediate Value Theorem applied to gg on the interval [3,2][-3, 2], can be used to establish the existence of a number x0x_0 satisfying 3<x0<2-3 < x_0 < 2 and such that g(x0)g(x_0) equals

(a) 7, (b) 11, (c) 14, (d) 16, (e) -80.
Intermediate Value Theorem

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Understand the Intermediate Value Theorem


The Intermediate Value Theorem states that if a function ff is continuous on a closed interval [a,b][a, b], then it takes on every value between f(a)f(a) and f(b)f(b).

For the IVT to guarantee the existence of an x0x_0 where g(x0)=kg(x_0) = k, the value kk must lie between g(a)g(a) and g(b)g(b).

Step 2: Evaluate the function at the endpoints



g(x)=3x32x26x+5g(3)=3(3)32(3)26(3)+5g(3)=3(27)2(9)6(3)+5g(3)=8118+18+5g(3)=76 \begin{align}
& g(x) = 3x^3 - 2x^2 - 6x + 5 \\
& g(-3) = 3(-3)^3 - 2(-3)^2 - 6(-3) + 5 \\
& g(-3) = 3(-27) - 2(9) - 6(-3) + 5 \\
& g(-3) = -81 - 18 + 18 + 5 \\
& g(-3) = -76
\end{align}


g(2)=3(2)32(2)26(2)+5g(2)=3(8)2(4)6(2)+5g(2)=24812+5g(2)=9 \begin{align}
& g(2) = 3(2)^3 - 2(2)^2 - 6(2) + 5 \\
& g(2) = 3(8) - 2(4) - 6(2) + 5 \\
& g(2) = 24 - 8 - 12 + 5 \\
& g(2) = 9
\end{align}



Step 3: Determine which values lie between g(3)g(-3) and g(2)g(2)


By the Intermediate Value Theorem, g(x)g(x) takes on all values between 76-76 and 99 for some xx in the interval [3,2][-3, 2].

Let's check each option:
- (a) 7: This is between 76-76 and 99
- (b) 11: This is NOT between 76-76 and 99
- (c) 14: This is NOT between 76-76 and 99
- (d) 16: This is NOT between 76-76 and 99
- (e) -80: This is NOT between 76-76 and 99

Step 4: Identify the answer


Only the value 7 lies between g(3)=76g(-3) = -76 and g(2)=9g(2) = 9, so it is the only value guaranteed by the Intermediate Value Theorem to be a value of g(x0)g(x_0) for some x0x_0 in (3,2)(-3,2).

The answer is (a) 7.\boxed{\text{The answer is (a) 7.}}
The answer is (a) 7.\boxed{\text{The answer is (a) 7.}}
Question 16

Let g(x)=3x32x26x+5g(x) = 3x^3 - 2x^2 - 6x + 5. The Mean Value Theorem applied to gg on the interval [3,2][-3, 2], yields the existence of a number x0x_0 satisfying 3<x0<2-3 < x_0 < 2 and such that g(x0)g'(x_0) equals

(a) 17, (b) 20, (c) 27, (d) 35, (e) -2.
Mean Value Theorem

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Let g(x)=3x32x26x+5g(x) = 3x^3 - 2x^2 - 6x + 5. The Mean Value Theorem applied to gg on the interval [3,2][-3, 2], yields the existence of a number x0x_0 satisfying 3<x0<2-3 < x_0 < 2 and such that g(x0)g'(x_0) equals

(a) 17, (b) 20, (c) 27, (d) 35, (e) -2.

Step 1: Understand the Mean Value Theorem



mean value theorem sample

Figure: mean value theorem sample



This is just a sample. In our question we are using g(x)g(x) and instead of ξ\xi we use x0x_0.

The Mean Value Theorem states that if a function gg is continuous on a closed interval [a,b][a, b] and differentiable on the open interval (a,b)(a, b), then there exists at least one point x0x_0 in (a,b)(a, b) such that:

g(x0)=g(b)g(a)ba g'(x_0) = \frac{g(b) - g(a)}{b - a}

The derivative at the special point x0x_0 equals the average rate of change of the function over the entire interval.

Step 2: Find the derivative of g(x)g(x)



g(x)=3x32x26x+5g(x)=9x24x6 \begin{align}
& g(x) = 3x^3 - 2x^2 - 6x + 5 \\
& g'(x) = 9x^2 - 4x - 6
\end{align}



Step 3: Calculate the function values at the endpoints


From our previous work, we already know:


g(3)=76g(2)=9 \begin{align}
& g(-3) = -76 \\
& g(2) = 9
\end{align}



Step 4: Find the average rate of change



g(2)g(3)2(3)=9(76)2+3g(2)g(3)2(3)=855g(2)g(3)2(3)=17 \begin{align}
& \frac{g(2) - g(-3)}{2 - (-3)} = \frac{9 - (-76)}{2 + 3} \\
& \frac{g(2) - g(-3)}{2 - (-3)} = \frac{85}{5} \\
& \frac{g(2) - g(-3)}{2 - (-3)} = 17
\end{align}



By the Mean Value Theorem, there exists at least one point x0x_0 in the interval (3,2)(-3, 2) such that g(x0)=17g'(x_0) = 17.

Step 5: Compare with the given options


Looking at the answer choices:
- (a) 17: This matches our calculated value ✓
- (b) 20: Not equal to 17 ✗
- (c) 27: Not equal to 17 ✗
- (d) 35: Not equal to 17 ✗
- (e) -2: Not equal to 17 ✗


The answer is (a) 17.\boxed{\text{The answer is (a) 17.}}
The answer is (a) 17.\boxed{\text{The answer is (a) 17.}}
Question 17

Find all critical points of the function f(x)=cos(x)(xπ)sin(x)f(x) = -\cos(x) - (x - \pi)\sin(x) in the interval 3π2<x<5π2-\frac{3\pi}{2} < x < \frac{5\pi}{2}.

Classify each such point as a local minimum, a local maximum or some other kind of critical point.
critical points
find critical numbers
Classify crit points

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

I'll solve a slightly different question that tests the same calculus concepts of finding and classifying critical points.

Let's work with the function: f(x)=cos(x)(xπ)sin(x)f(x) = -\cos(x) - (x-\pi)\sin(x) in the interval 3π2<x<5π2-\frac{3\pi}{2} < x < \frac{5\pi}{2}.

Step 1: Find the derivative

To find critical points, I need to take the derivative and set it equal to zero.


f(x)=sin(x)sin(x)(xπ)cos(x)=(xπ)cos(x) \begin{align}
f'(x) &= \sin(x) - \sin(x) - (x-\pi)\cos(x) \\
&= -(x-\pi)\cos(x)
\end{align}





When differentiating products, remember that the derivative of (xπ)sin(x)(x-\pi)\sin(x) follows the product rule: (xπ)cos(x)+sin(x)1(x-\pi)\cos(x) + \sin(x) \cdot 1

Step 2: Set the derivative equal to zero

f(x)=(xπ)cos(x)=0 f'(x) = -(x-\pi)\cos(x) = 0

This equation equals zero when either:
- (xπ)=0(x-\pi) = 0, which gives x=πx = \pi
- cos(x)=0\cos(x) = 0, which gives x=π2+nπx = \frac{\pi}{2} + n\pi where nn is an integer

In our interval 3π2,5π2-\frac{3\pi}{2}, \frac{5\pi}{2}, cos(x)=0\cos(x) = 0 when:
x=π2,π2,3π2x = -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}

Step 3: Check the critical points in the given interval

So our critical points are:
- x=π2x = -\frac{\pi}{2}
- x=π2x = \frac{\pi}{2}
- x=πx = \pi
- x=3π2x = \frac{3\pi}{2}

Step 4: Classify the critical points

To classify, I'll use the second derivative test.


f(x)=(cos(x)(xπ)(sin(x)))=cos(x)+(xπ)sin(x) \begin{align}
f''(x) &= -(cos(x) - (x-\pi)(-\sin(x))) \\
&= -\cos(x) + (x-\pi)\sin(x)
\end{align}



Now I'll evaluate f(x)f''(x) at each critical point:



At x=π2x = -\frac{\pi}{2}:

f(π2)=cos(π2)+(π2π)sin(π2)=0+(3π2)(1)=3π2 \begin{align}
f''(-\frac{\pi}{2}) &= -\cos(-\frac{\pi}{2}) + (-\frac{\pi}{2}-\pi)\sin(-\frac{\pi}{2}) \\
&= 0 + (-\frac{3\pi}{2})(-1) \\
&= \frac{3\pi}{2}
\end{align}



Since f(π2)>0f''(-\frac{\pi}{2}) > 0, this is a local minimum.

At x=π2x = \frac{\pi}{2}:

f(π2)=cos(π2)+(π2π)sin(π2)=0+(π2)(1)=π2 \begin{align}
f''(\frac{\pi}{2}) &= -\cos(\frac{\pi}{2}) + (\frac{\pi}{2}-\pi)\sin(\frac{\pi}{2}) \\
&= 0 + (-\frac{\pi}{2})(1) \\
&= -\frac{\pi}{2}
\end{align}



Since f(π2)<0f''(\frac{\pi}{2}) < 0, this is a local maximum.

At x=πx = \pi:
f(π)=cos(π)+(ππ)sin(π)=(1)+0=1 \begin{align}
f''(\pi) &= -\cos(\pi) + (\pi-\pi)\sin(\pi) \\
&= -(-1) + 0 \\
&= 1
\end{align}

Since f(π)>0f''(\pi) > 0, this is a local minimum.

At x=3π2x = \frac{3\pi}{2}:

f(3π2)=cos(3π2)+(3π2π)sin(3π2)=0+(π2)(1)=π2 \begin{align}
f''(\frac{3\pi}{2}) &= -\cos(\frac{3\pi}{2}) + (\frac{3\pi}{2}-\pi)\sin(\frac{3\pi}{2}) \\
&= 0 + (\frac{\pi}{2})(-1) \\
&= -\frac{\pi}{2}
\end{align}



Since f(3π2)<0f''(\frac{3\pi}{2}) < 0, this is a local maximum.

Final Answer


Critical points: x=π2,π2,π,3π2
\boxed{\text{Critical points: } x = -\frac{\pi}{2}, \frac{\pi}{2}, \pi, \frac{3\pi}{2}}


x=π2:local minimumx=π2:local maximumx=π:local minimumx=3π2:local maximum
\boxed{\begin{align}
&x = -\frac{\pi}{2}: \text{local minimum}\\
&x = \frac{\pi}{2}: \text{local maximum}\\
&x = \pi: \text{local minimum}\\
&x = \frac{3\pi}{2}: \text{local maximum}
\end{align}}
Critical points: x=π2,π2,π,3π2
\boxed{\text{Critical points: } x = -\frac{\pi}{2}, \frac{\pi}{2}, \pi, \frac{3\pi}{2}}


x=π2:local minimumx=π2:local maximumx=π:local minimumx=3π2:local maximum
\boxed{\begin{align}
&x = -\frac{\pi}{2}: \text{local minimum}\\
&x = \frac{\pi}{2}: \text{local maximum}\\
&x = \pi: \text{local minimum}\\
&x = \frac{3\pi}{2}: \text{local maximum}
\end{align}}



solution

Figure: solution

Question 18

Find the first derivative and second derivative of the function

f(x)=(x24x+4)ex.f(x) = (x^2 - 4x + 4)e^x.

Determine where the function is increasing and decreasing.

Determine where the function is concave up and concave down.
concavity
concavity tables
Intervals of Increase and Decrease

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Find the first derivative


Let's work with the function: f(x)=(x24x+4)exf(x) = (x^2 - 4x + 4)e^x

To find the first derivative, I'll use the product rule: (uv)=uv+uv(u \cdot v)' = u' \cdot v + u \cdot v'

Where:
- u=x24x+4u = x^2 - 4x + 4
- v=exv = e^x

First, I'll find uu':
u=(x24x+4)=2x4 \begin{align}
u' &= (x^2 - 4x + 4)' \\
&= 2x - 4
\end{align}


Now applying the product rule:
f(x)=(2x4)ex+(x24x+4)ex=(2x4+x24x+4)ex=(x22x)ex=x(x2)ex \begin{align}
f'(x) &= (2x - 4)e^x + (x^2 - 4x + 4)e^x \\
&= (2x - 4 + x^2 - 4x + 4)e^x \\
&= (x^2 - 2x)e^x \\
&= x(x-2)e^x
\end{align}


Step 2: Find the second derivative


For the second derivative, I'll apply the product rule again to f(x)=x(x2)exf'(x) = x(x-2)e^x

Where:
- u=x(x2)u = x(x-2)
- v=exv = e^x

First, I'll find uu':
u=(x(x2))=(x2)+x1=2x2 \begin{align}
u' &= (x(x-2))' \\
&= (x-2) + x \cdot 1 \\
&= 2x - 2
\end{align}


Now applying the product rule:
f(x)=(2x2)ex+x(x2)ex=(2x2+x22x)ex=(x22)ex \begin{align}
f''(x) &= (2x - 2)e^x + x(x-2)e^x \\
&= (2x - 2 + x^2 - 2x)e^x \\
&= (x^2 - 2)e^x
\end{align}


Step 3: Determine where the function is increasing and decreasing


A function is increasing when f(x)>0f'(x) > 0 and decreasing when f(x)<0f'(x) < 0.

Let's find where f(x)=0f'(x) = 0:
f(x)=x(x2)ex=0 \begin{align}
f'(x) &= x(x-2)e^x = 0
\end{align}


Since ex>0e^x > 0 for all xx, we need to solve:
x(x2)=0 \begin{align}
x(x-2) &= 0
\end{align}


This gives us x=0x = 0 or x=2x = 2

When analyzing where a function is increasing or decreasing, focus on where the first derivative changes sign.

Testing regions:
- For x<0x < 0: x<0x < 0 and x2<0x-2 < 0, so x(x2)>0x(x-2) > 0, meaning f(x)>0f'(x) > 0
- For 0<x<20 < x < 2: x>0x > 0 and x2<0x-2 < 0, so x(x2)<0x(x-2) < 0, meaning f(x)<0f'(x) < 0
- For x>2x > 2: x>0x > 0 and x2>0x-2 > 0, so x(x2)>0x(x-2) > 0, meaning f(x)>0f'(x) > 0

Therefore:
- ff is increasing for x<0x < 0
- ff is decreasing for 0<x<20 < x < 2
- ff is increasing for x>2x > 2

Step 4: Determine where the function is concave up and concave down


A function is concave up when f(x)>0f''(x) > 0 and concave down when f(x)<0f''(x) < 0.

From our second derivative:
f(x)=(x22)ex \begin{align}
f''(x) = (x^2 - 2)e^x
\end{align}


Since ex>0e^x > 0 for all xx, we need to solve x22=0x^2 - 2 = 0:
x2=2x=±2 \begin{align}
x^2 &= 2 \\
x &= \pm \sqrt{2}
\end{align}


Testing regions:
- For x<2x < -\sqrt{2}: x2>2x^2 > 2, so f(x)>0f''(x) > 0
- For 2<x<2-\sqrt{2} < x < \sqrt{2}: x2<2x^2 < 2, so f(x)<0f''(x) < 0
- For x>2x > \sqrt{2}: x2>2x^2 > 2, so f(x)>0f''(x) > 0

Therefore:
- ff is concave up for x<2x < -\sqrt{2}
- ff is concave down for 2<x<2-\sqrt{2} < x < \sqrt{2}
- ff is concave up for x>2x > \sqrt{2}

Final Answer

f(x)=x(x2)ex
\boxed{f'(x) = x(x-2)e^x}

f(x)=(x22)ex
\boxed{f''(x) = (x^2 - 2)e^x}

Increasing: x<0 or x>2Decreasing: 0<x<2
\boxed{\begin{align}
&\text{Increasing: } x < 0 \text{ or } x > 2\\
&\text{Decreasing: } 0 < x < 2
\end{align}}

Concave up: x<2 or x>2Concave down: 2<x<2
\boxed{\begin{align}
&\text{Concave up: } x < -\sqrt{2} \text{ or } x > \sqrt{2}\\
&\text{Concave down: } -\sqrt{2} < x < \sqrt{2}
\end{align}}
f(x)=x(x2)ex
\boxed{f'(x) = x(x-2)e^x}

f(x)=(x22)ex
\boxed{f''(x) = (x^2 - 2)e^x}

Increasing: x<0 or x>2Decreasing: 0<x<2
\boxed{\begin{align}
&\text{Increasing: } x < 0 \text{ or } x > 2\\
&\text{Decreasing: } 0 < x < 2
\end{align}}

Concave up: x<2 or x>2Concave down: 2<x<2
\boxed{\begin{align}
&\text{Concave up: } x < -\sqrt{2} \text{ or } x > \sqrt{2}\\
&\text{Concave down: } -\sqrt{2} < x < \sqrt{2}
\end{align}}
Question 19

A spherical snowball is melting such that its radius is decreasing at a constant rate of 2 centimeters per hour. Find the rate at which its surface area and volume are decreasing when the radius is 10 centimeters.
differentiation: implicit
implicit differentiation

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Identify Knowns and Unknowns

We are given the rate at which the radius r r is changing:
drdt=2 cm/hr \frac{dr}{dt} = -2 \text{ cm/hr}
(The rate is negative because the radius is decreasing).
We need to find the rates at which the surface area A A and the volume V V are changing at the instant when the radius is r=10 r = 10 cm.
That is, we need to find dAdt \frac{dA}{dt} and dVdt \frac{dV}{dt} when r=10 r = 10 .

Step 2: Write Down Relevant Formulas

The formulas for the surface area and volume of a sphere with radius r r are:
Surface Area: A=4πr2 A = 4 \pi r^2
Volume: V=43πr3 V = \frac{4}{3} \pi r^3

Step 3: Differentiate with Respect to Time

Now, we differentiate both formulas with respect to time t t , using implicit differentiation because A A , V V , and r r are all functions of t t .

For Surface Area A=4πr2 A = 4 \pi r^2 :
ddt(A)=ddt(4πr2)dAdt=4π(2r)drdtdAdt=8πrdrdt \begin{align}
\frac{d}{dt}(A) &= \frac{d}{dt}(4 \pi r^2) \\
\frac{dA}{dt} &= 4 \pi \cdot (2r) \cdot \frac{dr}{dt} \\
\frac{dA}{dt} &= 8 \pi r \frac{dr}{dt}
\end{align}

For Volume V=43πr3 V = \frac{4}{3} \pi r^3 :
ddt(V)=ddt(43πr3)dVdt=43π(3r2)drdtdVdt=4πr2drdt \begin{align}
\frac{d}{dt}(V) &= \frac{d}{dt}(\frac{4}{3} \pi r^3) \\
\frac{dV}{dt} &= \frac{4}{3} \pi \cdot (3r^2) \cdot \frac{dr}{dt} \\
\frac{dV}{dt} &= 4 \pi r^2 \frac{dr}{dt}
\end{align}

When performing implicit differentiation with respect to time t t , remember that differentiating a term involving r r requires multiplying by drdt \frac{dr}{dt} . For example, ddt(rn)=nrn1drdt \frac{d}{dt}(r^n) = n r^{n-1} \frac{dr}{dt} . Similarly, ddt(A)=dAdt \frac{d}{dt}(A) = \frac{dA}{dt} and ddt(V)=dVdt \frac{d}{dt}(V) = \frac{dV}{dt} .

Step 4: Substitute Known Values and Solve for Surface Area Rate

Substitute r=10 r = 10 cm and drdt=2 \frac{dr}{dt} = -2 cm/hr into the equation for dAdt \frac{dA}{dt} :
dAdt=8πrdrdt=8π(10)(2)=160π \begin{align}
\frac{dA}{dt} &= 8 \pi r \frac{dr}{dt} \\
&= 8 \pi (10) (-2) \\
&= -160 \pi
\end{align}

The surface area is decreasing at a rate of 160π 160 \pi square centimeters per hour.

Step 5: Substitute Known Values and Solve for Volume Rate

Substitute r=10 r = 10 cm and drdt=2 \frac{dr}{dt} = -2 cm/hr into the equation for dVdt \frac{dV}{dt} :
dVdt=4πr2drdt=4π(10)2(2)=4π(100)(2)=800π \begin{align}
\frac{dV}{dt} &= 4 \pi r^2 \frac{dr}{dt} \\
&= 4 \pi (10)^2 (-2) \\
&= 4 \pi (100) (-2) \\
&= -800 \pi
\end{align}

The volume is decreasing at a rate of 800π 800 \pi cubic centimeters per hour.
Notice that the formula for dVdt \frac{dV}{dt} is 4πr2drdt 4 \pi r^2 \frac{dr}{dt} . Since the surface area A=4πr2 A = 4 \pi r^2 , we can also write dVdt=Adrdt \frac{dV}{dt} = A \frac{dr}{dt} . This sometimes provides a shortcut if the surface area is already known or easily calculated.

Final Answer

When the radius is 10 cm, the surface area is decreasing at a rate of 160π 160 \pi cm²/hr and the volume is decreasing at a rate of 800π 800 \pi cm³/hr.
dAdt=160π cm2/hr \boxed{ \frac{dA}{dt} = -160 \pi \text{ cm}^2/\text{hr} }
dVdt=800π cm3/hr \boxed{ \frac{dV}{dt} = -800 \pi \text{ cm}^3/\text{hr} }
dAdt=160π cm2/hr \boxed{ \frac{dA}{dt} = -160 \pi \text{ cm}^2/\text{hr} }
dVdt=800π cm3/hr \boxed{ \frac{dV}{dt} = -800 \pi \text{ cm}^3/\text{hr} }
Question 20

Find limy0+[cos(2y)]1/y2\lim_{y \to 0^+} [\cos(2y)]^{1/y^2}.
limits: general
limits: with logarithms

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Identify the indeterminate form


Let's check what happens when we try to evaluate the limit directly:

limy0+[cos(2y)]1/y2 \lim_{y \to 0^+} [\cos(2y)]^{1/y^2}

As y0+y \to 0^+:
- cos(2y)cos(0)=1\cos(2y) \to \cos(0) = 1
- 1/y21/y^2 \to \infty

So we have the indeterminate form 11^{\infty}, which we can't evaluate directly.

Step 2: Transform the expression using logarithms


To handle this indeterminate form, I'll define:

L=limy0+[cos(2y)]1/y2 L = \lim_{y \to 0^+} [\cos(2y)]^{1/y^2}

Taking the natural logarithm of both sides:

ln(L)=ln(limy0+[cos(2y)]1/y2) \ln(L) = \ln\left(\lim_{y \to 0^+} [\cos(2y)]^{1/y^2}\right)

ln(L)=limy0+ln([cos(2y)]1/y2) \ln(L) = \lim_{y \to 0^+} \ln\left([\cos(2y)]^{1/y^2}\right)

Using the property of logarithms:

ln(L)=limy0+1y2ln[cos(2y)] \ln(L) = \lim_{y \to 0^+} \frac{1}{y^2} \ln[\cos(2y)]

ln(L)=limy0+ln[cos(2y)]y2 \ln(L) = \lim_{y \to 0^+} \frac{\ln[\cos(2y)]}{y^2}

Step 3: Apply L'Hôpital's Rule to the transformed expression


Now we need to evaluate:

limy0+ln[cos(2y)]y2 \lim_{y \to 0^+} \frac{\ln[\cos(2y)]}{y^2}

As y0+y \to 0^+:
- ln[cos(2y)]ln(1)=0\ln[\cos(2y)] \to \ln(1) = 0
- y20y^2 \to 0

So we have the indeterminate form 00\frac{0}{0}, which means we can apply L'Hôpital's Rule.

Finding the derivatives:

ddy[ln(cos(2y))]=1cos(2y)(sin(2y)2) \frac{d}{dy}[\ln(\cos(2y))] = \frac{1}{\cos(2y)} \cdot (-\sin(2y) \cdot 2)




ddy[ln(cos(2y))]=2sin(2y)cos(2y) \frac{d}{dy}[\ln(\cos(2y))] = \frac{-2\sin(2y)}{\cos(2y)}

ddy[ln(cos(2y))]=2tan(2y) \frac{d}{dy}[\ln(\cos(2y))] = -2\tan(2y)

ddy[y2]=2y \frac{d}{dy}[y^2] = 2y

Applying L'Hôpital's Rule:

limy0+ln[cos(2y)]y2=limy0+2tan(2y)2y \lim_{y \to 0^+} \frac{\ln[\cos(2y)]}{y^2} = \lim_{y \to 0^+} \frac{-2\tan(2y)}{2y}

limy0+ln[cos(2y)]y2=limy0+tan(2y)y \lim_{y \to 0^+} \frac{\ln[\cos(2y)]}{y^2} = \lim_{y \to 0^+} \frac{-\tan(2y)}{y}

Step 4: Apply L'Hôpital's Rule a second time


For this new limit:

limy0+tan(2y)y \lim_{y \to 0^+} \frac{-\tan(2y)}{y}

As y0+y \to 0^+:
- tan(2y)tan(0)=0\tan(2y) \to \tan(0) = 0
- y0y \to 0

We again have the indeterminate form 00\frac{0}{0}, so we apply L'Hôpital's Rule again.

Finding the derivatives:

ddy[tan(2y)]=sec2(2y)2 \frac{d}{dy}[-\tan(2y)] = -\sec^2(2y) \cdot 2

ddy[tan(2y)]=2sec2(2y) \frac{d}{dy}[-\tan(2y)] = -2\sec^2(2y)

ddy[y]=1 \frac{d}{dy}[y] = 1

Applying L'Hôpital's Rule:

limy0+tan(2y)y=limy0+2sec2(2y)1 \lim_{y \to 0^+} \frac{-\tan(2y)}{y} = \lim_{y \to 0^+} \frac{-2\sec^2(2y)}{1}

limy0+tan(2y)y=limy0+2sec2(2y) \lim_{y \to 0^+} \frac{-\tan(2y)}{y} = \lim_{y \to 0^+} -2\sec^2(2y)

As y0+y \to 0^+:
- sec2(2y)sec2(0)=1\sec^2(2y) \to \sec^2(0) = 1

So:

limy0+2sec2(2y)=21=2 \lim_{y \to 0^+} -2\sec^2(2y) = -2 \cdot 1 = -2

Step 5: Find the original limit


We found that ln(L)=2\ln(L) = -2, so:

L=e2 L = e^{-2}

For indeterminate forms like 11^{\infty}, always try the strategy of taking the natural logarithm first, then applying L'Hôpital's Rule to the resulting expression.

Therefore:
limy0+[cos(2y)]1/y2=e2
\boxed{\lim_{y \to 0^+} [\cos(2y)]^{1/y^2} = e^{-2}}
limy0+[cos(2y)]1/y2=e2
\boxed{\lim_{y \to 0^+} [\cos(2y)]^{1/y^2} = e^{-2}}
Question 21

A rectangular prism with a square base of side length ss feet is to have a volume of VV cubic feet. The material for the top and bottom costs $6\$6 per square foot and the material for the sides costs $4\$4 per square foot. Write down a formula for the total cost CC for the prism in terms of ss and VV. Then find the dimensions that minimize the cost, and determine the ratio of height to side length in this minimal cost configuration.
optimization

Tag:

A comprehensive "Filter by Tags" search feature is available on the course homepage, allowing you to find all exercises with this tag.

Prerequisites for this Exercise

No prerequisite skills selected yet.

Step 1: Set up the basic relationships


Let's define our variables:
- ss = side length of the square base (in feet)
- hh = height of the rectangular prism (in feet)
- VV = volume (in cubic feet)

The volume of the rectangular prism is:

V=s2h V = s^2 \cdot h

Solving for hh:

h=Vs2 h = \frac{V}{s^2}

Step 2: Calculate the surface areas


The rectangular prism has 6 faces:
- 2 square faces (top and bottom) each with area s2s^2
- 4 rectangular faces (sides) each with area shs \cdot h

Total area of top and bottom = 2s22s^2 square feet
Total area of sides = 4sh=4sVs2=4Vs4s \cdot h = 4s \cdot \frac{V}{s^2} = \frac{4V}{s} square feet

Step 3: Calculate the total cost


Given:
- Cost of top and bottom material = $6\$6 per square foot
- Cost of side material = $4\$4 per square foot

Cost of top and bottom = 62s2=12s26 \cdot 2s^2 = 12s^2 dollars
Cost of sides = 44Vs=16Vs4 \cdot \frac{4V}{s} = \frac{16V}{s} dollars

Total cost:

C=12s2+16Vs C = 12s^2 + \frac{16V}{s}

Step 4: Find the value of s that minimizes the cost


To minimize the cost, we take the derivative of CC with respect to ss and set it equal to zero:

dCds=24s16Vs2 \frac{dC}{ds} = 24s - \frac{16V}{s^2}

Setting this equal to zero:

24s16Vs2=0 24s - \frac{16V}{s^2} = 0

24s=16Vs2 24s = \frac{16V}{s^2}

24s3=16V 24s^3 = 16V

s3=16V24=2V3 s^3 = \frac{16V}{24} = \frac{2V}{3}

s=2V33 s = \sqrt[3]{\frac{2V}{3}}

Step 5: Find the height and the ratio h/s


Using our earlier relation h=Vs2h = \frac{V}{s^2}, we can calculate hh when s=2V33s = \sqrt[3]{\frac{2V}{3}}:

h=Vs2=V(2V33)2=V(2V3)2/3 h = \frac{V}{s^2} = \frac{V}{\left(\sqrt[3]{\frac{2V}{3}}\right)^2} = \frac{V}{\left(\frac{2V}{3}\right)^{2/3}}

h=V(2V)2/332/3=V32/3(2V)2/3=V32/3V2/322/3 h = \frac{V}{\frac{(2V)^{2/3}}{3^{2/3}}} = \frac{V \cdot 3^{2/3}}{(2V)^{2/3}} = \frac{V \cdot 3^{2/3}}{V^{2/3} \cdot 2^{2/3}}

h=V1/332/322/3 h = \frac{V^{1/3} \cdot 3^{2/3}}{2^{2/3}}

Now let's find the ratio hs\frac{h}{s}:

hs=V1/332/322/32V33=V1/332/322/3(2V)1/331/3 \frac{h}{s} = \frac{\frac{V^{1/3} \cdot 3^{2/3}}{2^{2/3}}}{\sqrt[3]{\frac{2V}{3}}} = \frac{V^{1/3} \cdot 3^{2/3}}{2^{2/3} \cdot \frac{(2V)^{1/3}}{3^{1/3}}}

hs=V1/332/331/322/321/3V1/3 \frac{h}{s} = \frac{V^{1/3} \cdot 3^{2/3} \cdot 3^{1/3}}{2^{2/3} \cdot 2^{1/3} \cdot V^{1/3}}

hs=32/3+1/322/3+1/3=3121=32 \frac{h}{s} = \frac{3^{2/3 + 1/3}}{2^{2/3 + 1/3}} = \frac{3^1}{2^1} = \frac{3}{2}

In optimization problems with cost functions, setting the derivative equal to zero and solving for the critical points is the key technique for finding minimum or maximum values.

Therefore, when the cost is minimized, the ratio of height to side length is:
hs=32
\boxed{\frac{h}{s} = \frac{3}{2}}
C=12s2+16Vs \boxed{C = 12s^2 + \frac{16V}{s}}

s=2V33 \boxed{s = \sqrt[3]{\frac{2V}{3}}}

hs=32
\boxed{\frac{h}{s} = \frac{3}{2}}